-
Notifications
You must be signed in to change notification settings - Fork 154
/
n-queens.js
76 lines (67 loc) · 1.59 KB
/
n-queens.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/**
* N-Queens
*
* The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
*
* Given an integer n, return all distinct solutions to the n-queens puzzle.
*
* Each solution contains a distinct board configuration of the n-queens' placement,
* where 'Q' and '.' both indicate a queen and an empty space respectively.
*
* For example,
* There exist two distinct solutions to the 4-queens puzzle:
*
* [
* [".Q..", // Solution 1
* "...Q",
* "Q...",
* "..Q."],
*
* ["..Q.", // Solution 2
* "Q...",
* "...Q",
* ".Q.."]
* ]
*/
/**
* @param {number} n
* @return {string[][]}
*/
const solveNQueens = n => {
const results = [];
backtracking(n, 0, [], results);
return results;
};
const formatResult = (n, columns) => {
const result = [];
for (let i = 0; i < n; i++) {
const arr = Array(n).fill('.');
arr[columns[i]] = 'Q';
result.push(arr.join(''));
}
return result;
};
const isValid = (row, columns) => {
for (let i = 0; i < row; i++) {
if (columns[i] === columns[row]) {
return false; // Two queues are in the same column
}
if (row - i === Math.abs(columns[row] - columns[i])) {
return false; // Two queues are in the same diagonal
}
}
return true;
};
const backtracking = (n, row, columns, results) => {
if (row === n) {
results.push(formatResult(n, columns));
return;
}
for (let j = 0; j < n; j++) {
columns[row] = j;
if (isValid(row, columns)) {
backtracking(n, row + 1, columns, results);
}
}
};
export default solveNQueens;