-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
53 lines (47 loc) · 1.7 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Jérôme Eberhardt 2016-2020
# Author: Jérôme Eberhardt <[email protected]>
#
# License: MIT
from os.path import realpath, dirname, join
from setuptools import setup, find_packages
PROJECT_ROOT = dirname(realpath(__file__))
REQUIREMENTS_FILE = join(PROJECT_ROOT, 'requirement.txt')
with open(REQUIREMENTS_FILE) as f:
install_reqs = f.read().splitlines()
install_reqs.append('setuptools')
with open('README.md', 'r') as fh:
long_description = fh.read()
setup(name='unrolr',
version='0.5.0.3',
author='Jérôme Eberhardt',
author_email='[email protected]',
description='Dimensionality reduction method for MD trajectories',
long_description=long_description,
long_description_content_type='text/markdown',
packages=find_packages(),
package_data={'': ['LICENSE',
'README.md',
'requirement.txt']
},
data_files = [('', ['unrolr/core/kernel.cl'])],
install_requires=install_reqs,
include_package_data=True,
zip_safe=False,
license='MIT',
keywords=['bioinformatics', 'molecular structures',
'molecular dynamics', 'OpenCL',
'dimensionality reduction', 'stochastic proximity embedding',
'dihedral angles'],
classifiers=[
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Operating System :: Unix',
'Operating System :: MacOS',
'Topic :: Scientific/Engineering'
]
)