forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_minicpmv_tp.py
122 lines (106 loc) · 3.74 KB
/
test_minicpmv_tp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from typing import List
import pytest
import vllm
from tests.utils import fork_new_process_for_each_test
from vllm.assets.image import ImageAsset
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5"
PROMPT_TEMPLATE = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
"(<image>./</image>)\nWhat is in the image?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
IMAGE_ASSETS = [
ImageAsset("stop_sign"),
]
# After fine-tuning with LoRA, all generated content should start begin `A`.
EXPECTED_OUTPUT = [
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501
]
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
sampling_params = vllm.SamplingParams(
temperature=0,
max_tokens=5,
stop_token_ids=[128001, 128009], # eos_id, eot_id
)
inputs = [{
"prompt": PROMPT_TEMPLATE,
"multi_modal_data": {
"image": asset.pil_image
},
} for asset in IMAGE_ASSETS]
outputs = llm.generate(
inputs,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None,
)
# Print the outputs.
generated_texts: List[str] = []
for output in outputs:
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Generated text: {generated_text!r}")
return generated_texts
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@fork_new_process_for_each_test
def test_minicpmv_lora(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_num_seqs=2,
enable_lora=True,
max_loras=2,
max_lora_rank=8,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
)
output1 = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output1[i])
output2 = do_sample(llm, minicpmv_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output2[i])
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@fork_new_process_for_each_test
def test_minicpmv_tp4_wo_fully_sharded_loras(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=2,
max_loras=4,
max_lora_rank=64,
tensor_parallel_size=4,
trust_remote_code=True,
enforce_eager=True,
enable_chunked_prefill=True,
)
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@fork_new_process_for_each_test
def test_minicpmv_tp4_fully_sharded_loras(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=2,
max_loras=2,
max_lora_rank=8,
tensor_parallel_size=4,
trust_remote_code=True,
fully_sharded_loras=True,
enable_chunked_prefill=True,
)
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])