-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtidy_text.R
285 lines (238 loc) · 11 KB
/
tidy_text.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
library(tidyverse)
library(tidytext)
library(ggplot2)
library(scales)
library(RColorBrewer)
library(googlesheets)
library(rlang)
# chapter 1: The tidy text format
gs_auth()
gs_user()
# get key for data sheet
sheet_key <- gs_ls("the-office-lines") %>%
pull(sheet_key)
# register sheet to access it
reg <- sheet_key %>%
gs_key()
# read sheet data into R
raw_data <- reg %>%
gs_read(ws = "scripts")
# filter out deleted scenes
# remove text in [] and put in a new column
# there are 4000+ instances of ??? found in the data mainly in the last two seasons
# the ??? replaces ... - ' and "
# for now I'm just going to replace all instances with with ' since that seems to be the majority of the cases
# I may need to rethink this later; it won't matter if striping puntuation
# speaker is an important field in the data and there is some clean up to do. It looks like some entries for speakers have have actions []
# also there are some miss spellings micheal instead of michael
# and some unnecessary punctionation dwight:
# cleaning these up isn't a big deal because there are that many lines impacted
# tolower speaker because of inconsistent capitalization
mod_data <- raw_data %>%
filter(deleted == "FALSE") %>%
mutate(actions = str_extract_all(line_text, "\\[.*?\\]"),
line_text_mod = str_trim(str_replace_all(line_text, "\\[.*?\\]", ""))) %>%
mutate_at(vars(line_text_mod), funs(str_replace_all(mod_data$line_text_mod, "���","'"))) %>%
mutate_at(vars(speaker), funs(tolower)) %>%
mutate_at(vars(speaker), funs(str_trim(str_replace_all(., "\\[.*?\\]", "")))) %>%
mutate_at(vars(speaker), funs(str_replace_all(., "micheal|michel|michae$", "michael")))
# searching around on the interwebs indicates that there were 201 episodes of the office. Wikipedia
# counts some episodes like "A Benihana Christmas" as two, which I am not sure why
# the data from officequotes.net pretty much lines up with IMdB with the exception of season 6 because
# officequotes.net counts niagra parts 1 & 2 as one episode and the delivery parts 1 & 2 as one episode instead of two
# going with the idea that there were 186 episodes total
# proportion of episodes each character was in
total_episodes <- mod_data %>%
unite(season_ep, season, episode, remove = FALSE) %>%
summarise(num_episodes = n_distinct(season_ep)) %>%
as.integer()
episode_proportion <- mod_data %>%
unite(season_ep, season, episode, remove = FALSE) %>%
group_by(speaker) %>%
summarise(num_episodes = n_distinct(season_ep)) %>%
mutate(proportion = round((num_episodes / total_episodes) * 100, 1)) %>%
arrange(desc(num_episodes))
total_scenes <- mod_data %>%
unite(season_ep_scene, season, episode, scene, remove = FALSE) %>%
summarise(num_scenes = n_distinct(season_ep_scene)) %>%
as.integer()
# proportion of scenes each character was in
scene_proportion <- mod_data %>%
unite(season_ep_scene, season, episode, scene, remove = FALSE) %>%
group_by(speaker) %>%
summarise(num_scenes = n_distinct(season_ep_scene)) %>%
mutate(proportion = round((num_scenes / total_scenes) * 100, 1)) %>%
arrange(desc(num_scenes))
# which characters had the most lines
# this is for all lines and episodes; not every character was in every episode/season
line_proportion <- mod_data %>%
count(speaker) %>%
mutate(proportion = round((n / sum(n)) * 100, 1)) %>%
arrange(desc(n))
line_proportion_by_season <- mod_data %>%
group_by(season) %>%
count(speaker) %>%
mutate(proportion = round((n / sum(n)) * 100, 1)) %>%
arrange(season, desc(proportion))
line_proportion_over_time_main <- line_proportion_by_season %>%
filter(speaker %in% main_characters[1:10]) %>%
mutate_at(vars(speaker), factor, levels = main_characters) %>%
ggplot(aes(x = season, y = proportion, color = speaker)) +
geom_point(size = 2) +
geom_line() +
scale_x_continuous(breaks = seq(1, 9, 1)) +
theme_minimal() +
#scale_color_brewer(palette = "PRGn") +
facet_wrap(~ speaker, ncol = 3)
line_proportion_over_time_secondary <- line_proportion_by_season %>%
filter(speaker %in% main_characters[11:21]) %>%
mutate_at(vars(speaker), factor, levels = main_characters) %>%
ggplot(aes(x = season, y = proportion, color = speaker)) +
geom_point(size = 2) +
geom_line() +
scale_x_continuous(breaks = seq(1, 9, 1)) +
theme_minimal() +
#scale_color_brewer(palette = "Spectral") +
facet_wrap(~ speaker, ncol = 3)
# display.brewer.all()
# brewer.pal(10, "PRGn")
fct_inorder(main_characters)
levels(main_characters)
# tokenize lines and remove stop words
tidy_tokens <- mod_data %>%
select(line = id, line_text_mod, everything(), -line_text, -actions, -deleted) %>%
unnest_tokens(word, line_text_mod, strip_numeric = TRUE) %>%
anti_join(stop_words)
# plot absolute word counts for all lines
top_50_word_freq <- tidy_tokens %>%
count(word, sort = TRUE) %>%
mutate(proportion = round(n / sum(n), 3)) %>%
top_n(50, proportion) %>%
mutate(word = reorder(word, proportion)) %>%
ggplot(aes(word, percent(proportion))) +
geom_col() +
xlab(NULL) +
coord_flip() +
theme_minimal()
# defining main characters based on line proportion
main_characters <- factor(line_proportion %>%
top_n(21, n) %>%
pull(speaker) %>%
fct_inorder()
)
reorder_within <- function(x, by, within, fun = mean, sep = "___", ...) {
new_x <- paste(x, within, sep = sep)
stats::reorder(new_x, by, FUN = fun)
}
scale_x_reordered <- function(..., sep = "___") {
reg <- paste0(sep, ".+$")
ggplot2::scale_x_discrete(labels = function(x) gsub(reg, "", x), ...)
}
scale_y_reordered <- function(..., sep = "___") {
reg <- paste0(sep, ".+$")
ggplot2::scale_y_discrete(labels = function(x) gsub(reg, "", x), ...)
}
# plot top 10 absolute word counts by main character
top_10_word_freq_character <- tidy_tokens %>%
filter(speaker %in% main_characters) %>%
count(speaker, word, sort = TRUE) %>%
group_by(speaker) %>%
mutate(proportion = round(n / sum(n), 3)) %>%
top_n(10, proportion) %>%
ggplot(aes(reorder_within(word, proportion, speaker), percent(proportion), fill = speaker)) +
geom_col() +
scale_x_reordered() +
xlab(NULL) +
coord_flip() +
theme_minimal() +
facet_wrap(~ factor(speaker, levels = main_characters), scales = "free") +
theme(legend.position = "none")
frequency_by_character_list <- setNames(map(as.character(main_characters), ~ tidy_tokens %>%
filter(speaker %in% main_characters) %>%
count(speaker, word, sort = TRUE) %>%
group_by(speaker) %>%
mutate(proportion = n / sum(n)) %>%
select(-n) %>%
spread(speaker, proportion) %>%
gather(speaker, proportion, -.x, -word)), as.character(main_characters))
correlations_michael <- setNames(map(as.character(main_characters[-1]), ~
cor.test(data = as_tibble(frequency_by_character_list[["michael"]]) %>%
filter(speaker == .x),
~ proportion + michael)), as.character(main_characters[-1]))
df_cor_michael <- correlations_michael %>%
map_df(tidy) %>%
mutate(character = names(correlations_michael),
comparison = map_chr(correlations_michael, 8)) %>%
arrange(desc(estimate)) %>%
select(character, everything())
correlations_jim <- setNames(map(as.character(main_characters[-3]), ~
cor.test(data = as_tibble(frequency_by_character_list[["jim"]]) %>%
filter(speaker == .x),
~ proportion + jim)), as.character(main_characters[-3]))
df_cor_jim <- correlations_jim %>%
map_df(tidy) %>%
mutate(character = names(correlations_jim),
comparison = map_chr(correlations_jim, 8)) %>%
arrange(desc(estimate)) %>%
select(character, everything())
correlations_pam <- setNames(map(as.character(main_characters[-4]), ~
cor.test(data = as_tibble(frequency_by_character_list[["pam"]]) %>%
filter(speaker == .x),
~ proportion + pam)), as.character(main_characters[-4]))
df_cor_pam <- correlations_pam %>%
map_df(tidy) %>%
mutate(character = names(correlations_pam),
comparison = map_chr(correlations_pam, 8)) %>%
arrange(desc(estimate)) %>%
select(character, everything())
correlations_dwight <- setNames(map(as.character(main_characters[-2]), ~
cor.test(data = as_tibble(frequency_by_character_list[["dwight"]]) %>%
filter(speaker == .x),
~ proportion + dwight)), as.character(main_characters[-2]))
df_cor_dwight <- correlations_dwight %>%
map_df(tidy) %>%
mutate(character = names(correlations_dwight),
comparison = map_chr(correlations_dwight, 8)) %>%
arrange(desc(estimate)) %>%
select(character, everything())
correlations <- setNames(map(as.character(main_characters[-1]), ~
cor.test(data = frequency_by_character %>%
filter(speaker == .x),
~ proportion + michael)), as.character(main_characters[-1]))
correlations %>%
map_df(tidy) %>%
mutate(character = names(correlations),
comparison = map_chr(correlations, 8))
# there is a way to do this will all combination of characters, but I haven't figured it out yet
frequency_by_character_list <- setNames(map(as.character(main_characters), ~ tidy_tokens %>%
filter(speaker %in% main_characters) %>%
count(speaker, word, sort = TRUE) %>%
group_by(speaker) %>%
mutate(proportion = n / sum(n)) %>%
select(-n) %>%
spread(speaker, proportion) %>%
gather(speaker, proportion, -.x, -word)), as.character(main_characters))
correlations_list <- for (i in seq_along(frequency_by_character_list)) {
characters <- as.character(main_characters[-i])
tibble <- as_tibble(frequency_by_character_list[[i]])
#compare <- names(tibble)[2]
#compare <- quo(!! names(tibble)[2])
setNames(map(characters, ~
cor.test(data = tibble %>%
filter(speaker == .x),
~ 4 + 2)), characters)
}
tibble %>%
filter(speaker == .x) %>%
cor.test(tibble[2], tibble[4])
cor.test(data = tibble %>%
filter(speaker == .x),
~ proportion + compare))
frequency_by_character <- tidy_tokens %>%
filter(speaker %in% main_characters) %>%
count(speaker, word, sort = TRUE) %>%
group_by(speaker) %>%
mutate(proportion = n / sum(n)) %>%
select(-n) %>%
spread(speaker, proportion) %>%
gather(speaker, proportion, -michael, -word)