This repository has been archived by the owner on Jun 11, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.js
162 lines (147 loc) · 4.9 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
Copyright © 2017 Jeff Epler <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
var fix = function(d) { return d.toFixed(2); }
var todatauri = function(d, t) { return "data:" + (t || "") + ";base64," + btoa(d); }
var Curve = function(a, b, m, n1, n2, n3, scale) {
this.a = a;
this.b = b;
this.m = m;
this.n1 = n1;
this.n2 = n2;
this.n3 = n3;
this.scale = scale || 1;
}
Curve.prototype.r = function(phi) {
return this.scale * Math.pow(
Math.pow( Math.abs( Math.cos(this.m * phi / 4) / this.a), this.n2 ) +
Math.pow( Math.abs( Math.sin(this.m * phi / 4) / this.b), this.n3 ),
-1/this.n1)
}
Curve.prototype.max_phi = function() {
return 2 * Math.PI
// the period of the curve is only 2pi when n2==n3
// otherwise, it's 4. when n2*n3 > 0, the path joins up at 2pi
// but with a curvature discontinuity at the join.
// should make it optional to draw the full 4pi curve, I don't want
// to ruin old spiral and rosette-with-stem drawings
if(this.n2 == this.n3) return 2 * Math.PI
return 4 * Math.PI
}
Curve.prototype.xy = function(phi) {
var r = this.r(phi);
return [r * Math.cos(phi), r * Math.sin(phi)]
}
Curve.prototype.dxy = function(phi, h) {
h = h || 1e-9
var xy0 = this.xy(phi-h);
var xy1 = this.xy(phi+h);
return [(xy1[0]-xy0[0]) / (2*h), (xy1[1]-xy0[1]) / (2*h)]
}
Curve.prototype.pathcommand = function() {
var r = arguments[0]
for(var i = 1; i < arguments.length; i++) {
if(i > 1) r = r + ","
r = r + arguments[i].toFixed(2)
}
return r;
}
Curve.prototype.svgpath = function(n) {
n = n || 32
var r = ""
var ox, oy, odx, ody;
var dphi = 2 * Math.PI / n
var dmul = .4 * dphi // empirical
for(var i=0; i<=n; i++) {
var xy = this.xy(i * this.max_phi() / n);
var x = xy[0], y = xy[1];
var dxy = this.dxy(i * this.max_phi() / n);
var dx = (dmul*dxy[0]), dy = (dmul*dxy[1])
if(i == 0) {
r = r + this.pathcommand("M", x, y)
} else if(i == 1) {
r = r + this.pathcommand("c", odx, ody, x-dx-ox, y-dy-oy, x-ox, y-oy)
} else {
r = r + this.pathcommand("s", x-dx-ox, y-dy-oy, x-ox, y-oy)
}
odx = dx; ody = dy
ox = x; oy = y
}
return r
}
Curve.prototype.bbox = function(n) {
n = n || 32
var x0 = 0, y0 = 0, x1 = 0, y1 = 0
for(var i=0; i<n; i++) {
var xy = this.xy(i * this.max_phi() / n);
var x = xy[0], y = xy[1]
if(x < x0) x0 = x
if(x > x1) x1 = x
if(y < y0) y0 = y
if(y > y1) y1 = y
}
return [x0, y0, x1, y1]
}
Curve.prototype.maxr = function(n) {
n = n || 32
var mr = 0
for(var i=0; i<n; i++) {
var r = this.r(i * this.max_phi() / n);
if(r > mr) mr = r
}
return mr
}
Curve.prototype.tosvg = function(n, props) {
var path = this.svgpath(n);
var bbox = this.bbox()
return (
"<svg width=\"1024\" height=\"600\" viewbox=\"" + fix(bbox[0]) + " " + fix(bbox[1]) + " " + fix(bbox[2] - bbox[0]) + " " + fix(bbox[3] - bbox[1]) + "\"\n"
+ "xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n"
+ "xmlns:xlink=\"http://www.w3.org/1999/xlink\">"
+ "<path d=\"" + path + "\" " + (props || "") + "/>"
+ "</svg>")
}
Curve.prototype.tosvgdatauri = function(n, props) {
var svg = this.tosvg(n, props)
return todatauri(svg, "image/svg+xml")
}
Curve.prototype.preppathlen = function(n) {
n = n || 512
this.cl = [0];
var l = 0;
var oxy = this.xy(0)
for(var i=1; i<=n; i++) {
var phi = i * this.max_phi() / n;
var xy = this.xy(phi)
this.cl.push(l += Math.hypot(xy[0] - oxy[0], xy[1] - oxy[1]))
oxy = xy
}
if(l)
for(var i=1; i<=n; i++) {
this.cl[i] /= l
}
this.ol = 0
this.oi = 0
}
Curve.prototype.xypathlen = function(l) {
this.cl || this.preppathlen()
if(l < this.ol) { this.oi = 0 }
this.ol = l
while(l > this.cl[this.oi]) this.oi++;
var dlen = this.cl[this.oi + 1] - this.cl[this.oi];
var dt = l - this.cl[this.oi];
var dphi = this.max_phi() / (this.cl.length - 1)
var phi = dphi * (this.oi + dt/dlen)
return this.xy(phi)
}