diff --git a/skrub/_table_vectorizer.py b/skrub/_table_vectorizer.py index af66605e8..0388ae69d 100644 --- a/skrub/_table_vectorizer.py +++ b/skrub/_table_vectorizer.py @@ -239,7 +239,7 @@ class TableVectorizer(TransformerMixin, BaseEstimator): 'remainder' for applying `remainder`, 'passthrough' to return the unencoded columns. The default transformer is \ - (OneHotEncoder(handle_unknown="ignore", drop="if_binary")). + ``OneHotEncoder(handle_unknown="ignore", drop="if_binary")``. Features classified under this category are imputed based on the strategy defined with `impute_missing`. @@ -252,7 +252,7 @@ class TableVectorizer(TransformerMixin, BaseEstimator): 'drop' for dropping the columns, 'remainder' for applying `remainder`, or 'passthrough' to return the unencoded columns. - The default transformer is (GapEncoder(n_components=30)). + The default transformer is ``GapEncoder(n_components=30)``. Features classified under this category are imputed based on the strategy defined with `impute_missing`. @@ -273,8 +273,8 @@ class TableVectorizer(TransformerMixin, BaseEstimator): a Pipeline containing the preprocessing steps, 'drop' for dropping the columns, 'remainder' for applying `remainder`, - 'passthrough' to return the unencoded columns, - or `None` to use the default transformer (DatetimeEncoder()). + 'passthrough' to return the unencoded columns. + The default transformer is ``DatetimeEncoder()``. Features classified under this category are not imputed at all (regardless of `impute_missing`).