-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_keras.py
255 lines (191 loc) · 9.19 KB
/
main_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import sys
import os
import time
import numpy as np
import theano
from scipy.stats import pearsonr
sys.path.insert(0, os.path.abspath('../keras'))
from keras.preprocessing import sequence
from keras.optimizers import SGD, Adam, RMSprop, Adagrad, Adadelta
from keras.utils import np_utils
from keras.models import Sequential, Graph
from keras.layers.core import Dense, Dropout, Activation, Merge, Flatten, Masking
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM, GRU
from keras.regularizers import l2,activity_l2
from utils import loadWord2VecMap, iterate_minibatches, read_sequence_dataset
def build_network(args, wordEmbeddings, maxlen=36, reg=0.5*1e-4):
print("Building sequential model ...")
vocab_size = wordEmbeddings.shape[1]
wordDim = wordEmbeddings.shape[0]
l_lstm_1 = Sequential()
"""
M_1 = Masking(mask_value=vocab_size-1)
M_1._input_shape = (maxlen, wordDim)
l_lstm_1.add(M_1)
"""
l_lstm_1.add(Embedding(input_dim=vocab_size, output_dim=wordDim,
mask_zero=True, weights=[wordEmbeddings.T],input_length=maxlen))
#l_lstm_1.add(Embedding(input_dim=n_symbols, output_dim=300, input_length=maxlen))
l_lstm_1.add(LSTM(output_dim=args.lstmDim, return_sequences=False,
input_shape=(maxlen, wordDim)))
l_lstm_1.add(Dropout(0.1))
l_lstm_1.layers[1].regularizers = [l2(reg)] * 12
for i in range(12):
l_lstm_1.layers[1].regularizers[i].set_param(l_lstm_1.layers[1].get_params()[0][i])
l_lstm_2 = Sequential()
"""
M_2 = Masking(mask_value=vocab_size-1)
M_2._input_shape = (maxlen, wordDim)
l_lstm_2.add(M_2)
"""
l_lstm_2.add(Embedding(input_dim=vocab_size, output_dim=wordDim,
mask_zero=True, weights=[wordEmbeddings.T],input_length=maxlen))
#l_lstm_2.add(Embedding(input_dim=n_symbols, output_dim=300, input_length=maxlen))
l_lstm_2.add(LSTM(output_dim=args.lstmDim, return_sequences=False,
input_shape=(maxlen, wordDim)))
l_lstm_2.add(Dropout(0.1))
l_lstm_2.layers[1].regularizers = [l2(reg)] * 12
for i in range(12):
l_lstm_2.layers[1].regularizers[i].set_param(l_lstm_2.layers[1].get_params()[0][i])
l_mul = Sequential()
l_mul.add(Merge([l_lstm_1, l_lstm_2], mode='mul'))
#l_mul.add(Dense(output_dim=150,W_regularizer=l2(reg),b_regularizer=l2(reg)))
l_sub = Sequential()
l_sub.add(Merge([l_lstm_1, l_lstm_2], mode='abs_sub'))
#l_sub.add(Dense(output_dim=150,W_regularizer=l2(reg),b_regularizer=l2(reg)))
model = Sequential()
model.add(Merge([l_mul, l_sub], mode='concat', concat_axis=-1))
model.add(Dense(output_dim=args.hiddenDim,W_regularizer=l2(reg),b_regularizer=l2(reg)))
#model.add(Merge([l_mul,l_sub], mode='sum'))
model.add(Activation('sigmoid'))
if args.task=="sts":
model.add(Dense(5,W_regularizer=l2(reg), b_regularizer=l2(reg)))
elif args.task == "ent":
model.add(Dense(3,W_regularizer=l2(reg), b_regularizer=l2(reg)))
model.add(Activation('softmax'))
if args.optimizer == "sgd":
optimizer = SGD(lr=args.step)
elif args.optimizer == "adagrad":
optimizer = Adagrad(lr=args.step)
elif args.optimizer == "adadelta":
optimizer = Adadelta(lr=args.step)
elif args.optimizer == "rms":
optimizer = RMSprop(lr=args.step)
elif args.optimizer == "adam":
optimizer = Adam(lr=args.step)
else:
raise "Need set optimizer correctly"
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
train_fn = model.train_on_batch
val_fn = model.test_on_batch
predict_proba = model.predict_proba
return train_fn, val_fn, predict_proba
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description="Usage")
parser.add_argument("--minibatch",dest="minibatch",type=int,default=30)
parser.add_argument("--optimizer",dest="optimizer",type=str,default="adagrad")
parser.add_argument("--epochs",dest="epochs",type=int,default=20)
parser.add_argument("--step",dest="step",type=float,default=0.01)
parser.add_argument("--hiddenDim",dest="hiddenDim",type=int,default=50)
parser.add_argument("--lstmDim",dest="lstmDim",type=int,default=30)
parser.add_argument("--task",dest="task",type=str,default=None)
args = parser.parse_args()
print("Loading data...")
base_dir = os.path.dirname(os.path.realpath(__file__))
data_dir = os.path.join(base_dir, 'data')
sick_dir = os.path.join(data_dir, 'sick')
wordEmbeddings = loadWord2VecMap(os.path.join(sick_dir, 'word2vec.bin'))
X1_train, X1_mask_train, X2_train, X2_mask_train, Y_labels_train, Y_scores_train, Y_scores_pred_train = \
read_sequence_dataset(sick_dir, "train")
X1_dev, X1_mask_dev, X2_dev, X2_mask_dev, Y_labels_dev, Y_scores_dev, Y_scores_pred_dev = \
read_sequence_dataset(sick_dir, "dev")
X1_test, X1_mask_test, X2_test, X2_mask_test, Y_labels_test, Y_scores_test, Y_scores_pred_test = \
read_sequence_dataset(sick_dir, "test")
wordEmbeddings = loadWord2VecMap(os.path.join(sick_dir, 'word2vec.bin'))
wordEmbeddings = wordEmbeddings.astype(np.float32)
train_fn, val_fn, predict_proba= build_network(args, wordEmbeddings)
print("Starting training...")
best_val_acc = 0
best_val_pearson = 0
for epoch in range(args.epochs):
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X1_train, X1_mask_train, X2_train, X2_mask_train, Y_labels_train,
Y_scores_train, Y_scores_pred_train, args.minibatch, shuffle=True):
inputs1, inputs1_mask, inputs2, inputs2_mask, labels, scores, scores_pred = batch
if args.task == "sts":
train_err += train_fn([inputs1, inputs2], scores_pred)
elif args.task == "ent":
train_err += train_fn([inputs1, inputs2], labels)
else:
raise "task need to be set"
train_batches += 1
val_err = 0
val_acc = 0
val_batches = 0
val_pearson = 0
for batch in iterate_minibatches(X1_dev, X1_mask_dev, X2_dev, X2_mask_dev, Y_labels_dev, Y_scores_dev,
Y_scores_pred_dev, len(X1_dev), shuffle=False):
inputs1, inputs1_mask, inputs2, inputs2_mask, labels, scores, scores_pred = batch
if args.task == "sts":
err = val_fn([inputs1, inputs2], scores_pred)
preds = predict_proba([inputs1, inputs2])
predictScores = preds.dot(np.array([1,2,3,4,5]))
guesses = predictScores.tolist()
scores = scores.tolist()
pearson_score = pearsonr(scores,guesses)[0]
val_pearson += pearson_score
elif args.task == "ent":
err, acc = val_fn([inputs1, inputs2], labels, accuracy=True)
val_acc += acc
val_err += err
val_batches += 1
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, args.epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
if args.task == "sts":
val_score = val_pearson / val_batches * 100
print(" validation pearson:\t\t{:.2f} %".format(
val_pearson / val_batches * 100))
if best_val_pearson < val_score:
best_val_pearson = val_score
elif args.task == "ent":
val_score = val_acc / val_batches * 100
print(" validation accuracy:\t\t{:.2f} %".format(val_score))
if best_val_acc < val_score:
best_val_acc = val_score
# After training, we compute and print the test error:
test_err = 0
test_acc = 0
test_pearson = 0
test_batches = 0
for batch in iterate_minibatches(X1_test, X1_mask_test, X2_test, X2_mask_test, Y_labels_test,
Y_scores_test, Y_scores_pred_test, len(X1_test), shuffle=False):
inputs1, inputs1_mask, inputs2, inputs2_mask, labels, scores, scores_pred = batch
if args.task == "sts":
err = val_fn([inputs1, inputs2], scores_pred)
preds = predict_proba([inputs1, inputs2])
predictScores = preds.dot(np.array([1,2,3,4,5]))
guesses = predictScores.tolist()
scores = scores.tolist()
pearson_score = pearsonr(scores,guesses)[0]
test_pearson += pearson_score
elif args.task == "ent":
err, acc = val_fn([inputs1, inputs2], labels, accuracy=True)
test_acc += acc
test_err += err
test_batches += 1
print("Final results:")
print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches))
if args.task == "sts":
print(" Best validate perason:\t\t{:.2f} %".format(best_val_pearson))
print(" test pearson:\t\t{:.2f} %".format(
test_pearson / test_batches * 100))
elif args.task == "ent":
print(" Best validate accuracy:\t\t{:.2f} %".format(best_val_acc))
print(" test accuracy:\t\t{:.2f} %".format(
test_acc / test_batches * 100))