forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfloat8_tensor.py
395 lines (341 loc) · 14.9 KB
/
float8_tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import enum
from typing import Dict, NamedTuple, Optional
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torchao.float8.float8_utils import (
e4m3_dtype,
to_fp8_saturated,
)
aten = torch.ops.aten
#
# A note on configuration of float8 logic in a linear
# TODO(future): move all the configs to separate file
# TODO(future): change this to input/weight/grad_output notation,
# can be separate PR because none of this is user facing
#
# There are three gemms in a forward + backward of a Linear layer:
#
# 1. input @ weight_t = output (forward pass)
# 2. grad_output @ weight = grad_input (backward pass)
# 3. input_t @ grad_output = grad_weight (backward pass)
#
# In the formulas above, there are:
# A. six input tensors (input, input_t, weight, weight_t, grad_output, grad_output_t).
# - Note that grad_output_t is implied because of memory format requirements
# of float8 gemms
# B. three output tensors (output, grad_input, grad_weight)
#
# We want each input tensor, gemm, and output tensor to be configurable.
# The state of this configuration today is:
#
# i. pairs of input tensors (non-t and t variants) have their scaling
# configurable via the scaling_type_* arguments to Float8Linear
# ii. each gemm + output is configurable via ScaledMMConfig, which is not user facing
# iii. LinearMMConfig is a container for the three ScaledMMConfig objects needed
# to configure all three gemms, also not user facing
class ScaledMMConfig(NamedTuple):
"""
Configuration for the scaled_mm in the forward and backward pass.
Attributes:
emulate (bool): Whether to emulate the matmuls in fp32.
use_fast_accum (bool): Whether to use the fast-accumulation option for scaled_mm.
fp8_output (bool): Whether to output the result of the scaled_mm in fp8.
pad_inner_dim (bool): Whether to pad the inner dimension of a and b with 0s.
This is needed for matmuls not aligned to 16.
"""
emulate: bool = False
use_fast_accum: bool = False
fp8_output: bool = False
pad_inner_dim: bool = False
class LinearMMConfig(NamedTuple):
"""
Configuration for different gemm operations in LinearMM.
This configuration is not user-facing and exists for convenience,
allowing Float8Tensor to use the right config based on which gemm
from gemms with outputs `output`, `grad_input`, `grad_weight` is being called.
Attributes:
output (ScaledMMConfig): Configuration for the output gemm.
grad_input (ScaledMMConfig): Configuration for the grad_input gemm.
grad_weight (ScaledMMConfig): Configuration for the grad_weight gemm.
"""
output: ScaledMMConfig = ScaledMMConfig(False, True, False, False)
grad_input: ScaledMMConfig = ScaledMMConfig(False, False, False, False)
grad_weight: ScaledMMConfig = ScaledMMConfig(False, False, False, False)
class GemmInputRole(enum.Enum):
"""
Given a Float8Tensor, the enum below describes the expected role of this
tensor in the three gemms present in the fw + bw pass of a Linear layer.
This is used to choose the right config for a float8 gemm when the
gemm is performed.
"""
INPUT = "input"
WEIGHT = "weight"
GRAD_OUTPUT = "grad_output"
# choose which scaled_mm_config to use based on gemm inputs
def choose_scaled_mm_config(
a_role: GemmInputRole,
a_linear_mm_config: LinearMMConfig,
b_role: GemmInputRole,
b_linear_mm_config: LinearMMConfig,
):
if a_role is GemmInputRole.INPUT and b_role is GemmInputRole.WEIGHT:
assert (
a_linear_mm_config.output == b_linear_mm_config.output
), f"linear_mm_config.output mismatch: {a_linear_mm_config.output} vs {b_linear_mm_config.output}"
return a_linear_mm_config.output
elif a_role is GemmInputRole.GRAD_OUTPUT and b_role is GemmInputRole.WEIGHT:
assert (
a_linear_mm_config.grad_input == b_linear_mm_config.grad_input
), f"linear_mm_config.grad_input mismatch: {a_linear_mm_config.grad_input} vs {b_linear_mm_config.grad_input}"
return a_linear_mm_config.grad_input
elif a_role is GemmInputRole.GRAD_OUTPUT and b_role is GemmInputRole.INPUT:
assert (
a_linear_mm_config.grad_weight == b_linear_mm_config.grad_weight
), f"linear_mm_config.grad_weight mismatch: {a_linear_mm_config.grad_weight} vs {b_linear_mm_config.grad_weight}"
return a_linear_mm_config.grad_weight
else:
raise AssertionError(f"unexpected a_role {a_role} and b_role {b_role}")
def tensor_already_casted_to_fp8(tensor: torch.Tensor) -> bool:
"""
Check if the tensor is already casted to fp8
"""
if isinstance(tensor, Float8Tensor):
return True
elif isinstance(tensor, DTensor):
# TODO: shall we stick to public API and directly use tensor.to_local() here?
return tensor_already_casted_to_fp8(tensor._local_tensor)
elif isinstance(tensor, funcol.AsyncCollectiveTensor):
return tensor_already_casted_to_fp8(tensor.elem)
return False
@torch._dynamo.allow_in_graph
class _ToFloat8ConstrFunc(torch.autograd.Function):
"""
A differentiable conversion to fp8.
* forward: convert from high precision to float8
* backward: pass the gradient without changes
"""
@staticmethod
def forward(
ctx,
tensor: torch.Tensor,
scale: torch.Tensor,
float8_dtype=e4m3_dtype,
linear_mm_config: Optional[LinearMMConfig] = None,
gemm_input_role: Optional[GemmInputRole] = GemmInputRole.INPUT,
axiswise_dim: Optional[int] = None,
):
"""
This function will apply the scaling, and then convert to a Float8Tensor
Note:
We will call this function with a DTensor subclass. Ideally this would be an aten OP
that DTensor could overload to ensure proper semantics. There are some techincal issues
with that composing with FakeTensor, so we special case here.
DTensor Invariant: DTensor must always be the outer most tensor subclass
"""
# Note: when the line below is compiled with `torch.compile`, `tensor` is automatically
# upcasted to `float32` to multiply with the scale
# In order to match numerics between eager and compile, we upcast manually here.
tensor_scaled = tensor.to(torch.float32) * scale
bits_fp8 = to_fp8_saturated(tensor_scaled, float8_dtype)
if isinstance(bits_fp8, DTensor):
assert isinstance(
scale, DTensor
), "Expected Float8 scale to be a DTensor if bits_fp8 is a DTensor"
bits_mesh = bits_fp8.device_mesh
bits_placements = bits_fp8.placements
local_bits = bits_fp8.to_local()
local_scale = scale.to_local()
inner_float8_tensor = Float8Tensor(
local_bits,
local_scale,
tensor.dtype,
linear_mm_config=linear_mm_config,
gemm_input_role=gemm_input_role,
axiswise_dim=axiswise_dim,
)
return DTensor.from_local(
inner_float8_tensor,
bits_mesh,
bits_placements,
run_check=False,
shape=bits_fp8.size(),
stride=bits_fp8.stride(),
)
return Float8Tensor(
bits_fp8,
scale,
tensor.dtype,
linear_mm_config=linear_mm_config,
gemm_input_role=gemm_input_role,
axiswise_dim=axiswise_dim,
)
@staticmethod
def backward(ctx, g):
return g, None, None, None, None, None
@torch._dynamo.allow_in_graph
class _FromFloat8ConstrFunc(torch.autograd.Function):
"""
A differentiable conversion from fp8.
* forward: convert from float8 to high precision
* backward: pass the gradient without changes
"""
@staticmethod
def forward(ctx, tensor):
return tensor._data.to(tensor._orig_dtype) / tensor._scale
@staticmethod
def backward(ctx, g):
return g, None, None
def hp_tensor_and_scale_to_float8(
hp_tensor: torch.Tensor,
s: torch.Tensor,
float8_dtype=e4m3_dtype,
linear_mm_config: Optional[LinearMMConfig] = None,
gemm_input_role: Optional[GemmInputRole] = GemmInputRole.INPUT,
axiswise_dim: Optional[int] = None,
):
"""
Given a high precision tensor `hp_tensor` and a precalculated scale `s`,
scales `hp_tensor` by `s` and returns a `Float8Tensor` of the result.
Autograd-aware, the derivative is pass-through.
DTensor-aware, if the input is a DTensor the output will be DTensor(Float8Tensor).
Args:
hp_tensor: the tensor to convert
s: the scale to use to convert the tensor
float8_dtype: the float8 dtype to use
linear_mm_config: Defines the configuration for the scaled_mm for
the 3 fwd/bwd gemms of linear
gemm_input_role: Defines the role of this tensor (input, weight or grad_output) in
the 3 fwd/bwd gemms of linear
axiswise_dim: for rowwise scaling, contains the axis scaled across
"""
return _ToFloat8ConstrFunc.apply(
hp_tensor, s, float8_dtype, linear_mm_config, gemm_input_role, axiswise_dim
)
class Float8Tensor(torch.Tensor):
"""
Note: this is **not** a public API and is only intended to be used
inside of this repository. Please file an issue if you would benefit
from this being a public API.
A Python-only Float8 tensor subclass. Contains:
* `_data`: the underlying e4m3 or e5m2 data
* `_scale`: the scale used to scale the original fp32 tensor. We multiply
by scale to go from fp32 range to fp8 range, and divide by scale to go
from fp8 range to fp32 range. Scale is guaranteed to have a shape compatible
with `_data`. For example:
- if scaling is tensorwise, `_scale` is a scalar tensor
- if scaling is axiswise and _data.shape is [3, 5], `_scale` could have
shape [1, 5] or [3, 1]. `axiswise_dim` defines the scaling axis.
- if scaling is axiswise and _data.shape is [2, 3, 5], `_scale` could have
shape [1, 1, 5] or [2, 1, 1]. `axiswise_dim` defines the scaling
axis. Non-one entries which are not the first or last element are not
supported.
* `_orig_dtype`: the original dtype of the tensor used to create this
tensor.
* `_axiswise_dim`: for axiswise scaling only, contains the axis scales
across. Only values of 0 or -1 are supported.
Intended usage of this abstraction:
1. to bundle raw data + fp8 metadata together for easy passing through
Python PyTorch systems.
2. Float8-aware user code can use the private fields on these tensors
to call into float8 operations.
3. Float8-agnostic user code can use these tensors as is - they will
convert to original precision in `__torch_dispatch__`.
"""
_data: torch.Tensor
_scale: torch.Tensor
_orig_dtype: torch.dtype
_linear_mm_config: LinearMMConfig
_gemm_input_role: GemmInputRole
_axiswise_dim: Optional[int]
__slots__ = [
"_data",
"_scale",
"_orig_dtype",
"_linear_mm_config",
"_gemm_input_role",
"_axiswise_dim",
]
def __new__(
cls,
data: torch.Tensor,
scale: torch.Tensor,
orig_dtype: torch.dtype,
linear_mm_config: Optional[LinearMMConfig],
gemm_input_role: Optional[GemmInputRole] = GemmInputRole.INPUT,
axiswise_dim: Optional[int] = None,
):
self = torch.Tensor._make_wrapper_subclass(
cls,
data.size(),
strides=data.stride(),
storage_offset=data.storage_offset(),
dtype=orig_dtype,
layout=data.layout,
requires_grad=data.requires_grad,
device=data.device,
)
self._data = data
self._scale = scale
self._orig_dtype = orig_dtype
self._linear_mm_config = (
linear_mm_config if linear_mm_config is not None else LinearMMConfig()
)
self._gemm_input_role = gemm_input_role
assert axiswise_dim in (None, 0, -1), f"unsupported axiswise_dim {axiswise_dim}"
self._axiswise_dim = axiswise_dim
return self
def __repr__(self):
return f"Float8Tensor(dtype={self._data.dtype}, scale={self._scale}, linear_mm_config={self._linear_mm_config}, axiswise_dim={self._axiswise_dim}\ngemm_input_role={self._gemm_input_role}\nas_orig_prec={self.to_original_precision()}"
def __tensor_flatten__(self):
ctx = {
"_orig_dtype": self._orig_dtype,
"_linear_mm_config": self._linear_mm_config,
"_gemm_input_role": self._gemm_input_role,
"_axiswise_dim": self._axiswise_dim,
}
return ["_data", "_scale"], ctx
@staticmethod
def __tensor_unflatten__(inner_tensors: Dict, metadata, outer_size, outer_stride):
assert len(inner_tensors) == 2
return Float8Tensor(
inner_tensors["_data"],
inner_tensors["_scale"],
metadata["_orig_dtype"],
metadata["_linear_mm_config"],
metadata["_gemm_input_role"],
metadata["_axiswise_dim"],
)
def to_original_precision(self):
return _FromFloat8ConstrFunc.apply(self)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
# 1. tracing through __torch_function__ logic is not supported yet in
# PT2.0, so we explicitly disallow it here for callsites from user code.
# 2. We do need to handle a couple of ops in order for
# TorchDynamo tracing to succeed.
# Lazy import to avoid circular dependency
from torchao.float8.float8_ops import FLOAT8_OPS_TABLE
# All ops in the FLOAT8_OPS_TABLE expect Float8Tensor as inputs
# And don't support mixed tensor subclasses. This will trigger the handler for
# the next type in the dispatch list
def allowed_subclasses(type):
return (
issubclass(cls, type)
or issubclass(torch._subclasses.fake_tensor.FakeTensor, type)
or issubclass(
torch._subclasses.functional_tensor.FunctionalTensor, type
)
)
if not all(allowed_subclasses(t) for t in types):
return NotImplemented
if func in FLOAT8_OPS_TABLE:
return FLOAT8_OPS_TABLE[func](func, args, kwargs)
raise NotImplementedError(f"attempting to run {func}, this is not supported")
# Do not force the Float8Tensor type on the returned tensor
__torch_function__ = torch._C._disabled_torch_function_impl