forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
108 lines (93 loc) · 3.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
"""
Defines an nn module designed to be used during inference
"""
from typing import NamedTuple, Optional, Tuple
import torch
from torchao.float8.float8_utils import is_row_major, pad_tensor_for_matmul
Tensor = torch.Tensor
class Float8MMConfig(NamedTuple):
"""
Configuration for the scaled_mm in the forward and backward pass.
Attributes:
emulate (bool): Whether to emulate the matmuls in fp32.
use_fast_accum (bool): Whether to use the fast-accumulation option for scaled_mm.
pad_inner_dim (bool): Whether to pad the inner dimension of a and b with 0s.
This is needed for matmuls not aligned to 16.
"""
emulate: bool = False
use_fast_accum: bool = False
pad_inner_dim: bool = False
def preprocess_data(
a_data: Tensor,
b_data: Tensor,
scaled_mm_config: Float8MMConfig,
) -> Tuple[Tensor, Tensor]:
"""Preprocess the inner fp8 data tensors for admmm
Args:
a_data: Input tensor A.
b_data: Input tensor B.
scaled_mm_config: Configuration for _scaled_mm.
Returns:
Preprocessed tensors A and B in the format for _scaled_mm.
"""
if scaled_mm_config.pad_inner_dim:
assert a_data.size(1) == b_data.size(
0
), f"Inner dims must match for mm, got {a_data.size(1)} and {b_data.size(0)}"
a_data = pad_tensor_for_matmul(a_data, dims=1)
b_data = pad_tensor_for_matmul(b_data, dims=0)
if not is_row_major(a_data.stride()):
a_data = a_data.contiguous()
if is_row_major(b_data.stride()):
b_data = b_data.t().contiguous().t()
return a_data, b_data
def addmm_float8_unwrapped_inference(
a_data: Tensor,
a_scale: Tensor,
b_data: Tensor,
b_scale: Tensor,
output_dtype: torch.dtype,
output_scale: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
use_fast_accum: bool = False,
) -> Tensor:
"""
This is the unwrapped version of addmm_float8, which does not take in Float8Tensors
as inputs. This is used to standardize the logic between subclassed and non subclassed
versions of the linear module.
"""
if output_dtype == torch.float32 and bias is not None:
# Bias is not supported by _scaled_mm when output is fp32
output = torch._scaled_mm(
a_data,
b_data,
scale_a=a_scale,
scale_b=b_scale,
scale_result=output_scale,
out_dtype=output_dtype,
use_fast_accum=use_fast_accum,
)
output += bias
return output
output = torch._scaled_mm(
a_data,
b_data,
scale_a=a_scale,
scale_b=b_scale,
bias=bias,
scale_result=output_scale,
out_dtype=output_dtype,
use_fast_accum=use_fast_accum,
)
return output
def _is_rowwise_scaled(x) -> bool:
"""Checks if an AQT tensor is rowwise scaled
Args:
x: AffineQuantizedTensor tensor
"""
return x.block_size == (1,) * (x.dim() - 1) + (x.shape[-1],)