-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtest_function.py
49 lines (46 loc) · 1.65 KB
/
test_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import time
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from util import html
import copy
# This function is used to testing during training. Results are stored in the opt.results_dir.
# We do not need to run test script again.
def test_func(opt_train, webpage, epoch='latest'):
opt = copy.deepcopy(opt_train)
print(opt)
# specify the directory to save the results during training
opt.results_dir = './results/'
opt.isTrain = False
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.dataroot = opt.dataroot + '/test'
opt.model = 'test'
opt.dataset_mode = 'single'
opt.which_epoch = epoch
opt.how_many = 50
opt.phase = 'test'
# opt.name = name
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
# web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
# web_dir = os.path.join(opt.results_dir, opt.name)
# webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
print('process image... %s' % img_path)
visualizer.save_images_epoch(webpage, visuals, img_path, epoch)
webpage.save()