-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_gan.py
430 lines (353 loc) · 16.3 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import matplotlib.pyplot as plt
import neural_net
import numpy as np
import pandas as pd
import adabound
import os
import random
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.io as tvio
import torchvision.models as models
import kornia
from hyperdash import Experiment
from skimage import io, transform
from torch import cuda
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from PIL import Image
DIR = "./samples/2021_03_23_20_28_39/"
CSV_FILENAME = "data_sorted.csv"
#PATH = "model.pt"
#PATH = "model_shifted_adam_0_01_e20.pt"
PATH = "WGANGP_withPrevAction_NEW_was_mse_30_sgd_16_0_01_e50_ncritic_1.pt"
SEED = 13
#VAL_SIZE = 5000
#VAL_SIZE = 16500
#VAL_SIZE = 53445 # 100 batches
VAL_SIZE = 54945
#VAL_SIZE = 55013 # 2 batches
#VAL_SIZE = 55043
#VAL_SIZE = 54981
NUM_EPOCHS = 200
BATCH_SIZE = 2
USE_HALF = False
USE_GPU = True
#REAL_LABEL = 1
REAL_LABEL = -1
#FAKE_LABEL = 0
FAKE_LABEL = 1
LEARNING_RATE = 0.0006
BETA_ONE = 0.5
BETA_TWO = 0.999
N_CRITIC = 5
LAMBDA_GP = 10
LAMBDA_L2 = 30
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
def show_image(image):
"""Show image"""
plt.imshow(image, aspect="auto")
plt.pause(0.001) # pause a bit so that plots are updated
def show_sample_images(halo_dataset):
fig = plt.figure()
for i in range(len(halo_dataset)):
sample = halo_dataset[i]
print(i, sample['image'].shape, sample['controller_state'].shape)
ax = plt.subplot(1, 4, i + 1)
plt.tight_layout()
ax.set_title('Sample #{}'.format(i))
ax.axis('off')
show_image(sample['image'].permute(1, 2, 0))
if i == 3:
plt.show()
break
class HaloReachDataset(Dataset):
"""Halo Reach dataset."""
def __init__(self, csv_file_name, root_dir, transform=None, use_gpu=True, use_half=True):
"""
Args:
csv_file (string): Path to the csv file with filenames and controller states.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.halo_frame = pd.read_csv(os.path.join(root_dir, csv_file_name), header=None)
cols = self.halo_frame.columns
# round triggers to nearest integer
self.halo_frame[cols[5:7]] = self.halo_frame[cols[5:7]].round(0)
# normalize triggers and buttons to -1 to 1
self.halo_frame[cols[5:21]] = ((self.halo_frame[cols[5:21]] * 2.0) - 1.0).clip(-1, 1)
# Assign current action
self.current_controller_state = self.halo_frame[cols[1:21]]
# shift actions by 1
self.halo_frame[cols[1:21]] = self.halo_frame[cols[1:21]].shift(-1)
# normalize sticks to 0 - 1
#self.halo_frame[cols[1:5]] = ((self.halo_frame[cols[1:5]] + 1) / 2.0).clip(0, 1)
# CLASSIFICATION
# Convert stick values to values of [0, 1, 2, 3, 4] based on bins of [-1.1, -0.75, -0.25, 0.25, 0.75, 1.1]
#bins = [-1.1, -0.75, -0.25, 0.25, 0.75, 1.1]
#for i in range(1,5):
# self.halo_frame[[i]] = pd.cut(self.halo_frame[[i]].values.flatten(), bins, labels=[0,1,2,3,4]).codes
# Remove last row as it has no subsequent action data
self.halo_frame = self.halo_frame[:-1]
self.current_controller_state = self.current_controller_state[:-1]
self.root_dir = root_dir
self.transform = transform
if use_gpu:
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")
self.use_half = use_half
def __len__(self):
return len(self.halo_frame)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = os.path.join(self.root_dir,
os.path.basename(self.halo_frame.iloc[idx, 0]))
image = Image.open(img_name)
next_controller_state = self.halo_frame.iloc[idx, 1:21]
next_controller_state = np.array([next_controller_state])
next_controller_state = next_controller_state.astype('float').flatten()
current_controller_state = self.current_controller_state.iloc[idx, :]
current_controller_state = np.array([current_controller_state])
current_controller_state = current_controller_state.astype("float").flatten()
image = image.resize((960, 540))
sample = {'image': image, 'next_controller_state': next_controller_state, 'current_controller_state': current_controller_state, 'file_name': os.path.basename(self.halo_frame.iloc[idx, 0])}
if self.transform:
sample['image'] = self.transform(sample['image'])
return sample
# https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/wgan_gp/wgan_gp.py
def compute_gradient_penalty(D, real_samples, fake_samples, image_samples, prev_actions):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = Tensor(np.random.random((real_samples.size(0), 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates = D(image_samples, interpolates, prev_actions)
fake = Variable(Tensor(real_samples.shape[0], 1).fill_(1.0), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return LAMBDA_GP * gradient_penalty
def train(train_set, val_set, optimizer_g, optimizer_d, criterion, generator, discriminator, experiment, save_on_val_perf=True):
print_step = 5
one = torch.tensor(1, dtype=torch.float)
mone = one * -1
if USE_GPU:
one = one.cuda()
mone = mone.cuda()
trainloader = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=5)
generator.train()
discriminator.train()
best_average_validation_loss = 100
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, factor=0.5, patience=1, verbose=True)
#scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.1, steps_per_epoch=len(trainloader), epochs=NUM_EPOCHS)
for epoch in range(NUM_EPOCHS): # loop over the dataset multiple times
print("Epoch: ", epoch + 1)
experiment.metric("Epoch", epoch + 1)
running_loss_g = 0.0
running_loss_g_mse = 0.0
running_loss_d = 0.0
running_avg_wass_d = 0.0
batch_count = 0
for i, data in enumerate(trainloader, 0):
batch_count += 1
images, prev_actions, real_actions = data["image"].float(), data["current_controller_state"].float(), data["next_controller_state"].float()
batch_size = images.size(0)
if USE_GPU:
images = images.cuda()
real_actions = real_actions.cuda()
prev_actions = prev_actions.cuda()
images_v = Variable(images)
real_actions_v = Variable(real_actions)
prev_actions_v = Variable(prev_actions)
### Update Discriminator ###
for p in discriminator.parameters():
p.requires_grad = True
optimizer_d.zero_grad()
# Train with real batch
discriminator_output_real = discriminator(images_v, real_actions_v, prev_actions_v)
# Train with fake batch
#sticks, button_probs = generator(images, prev_actions)
#fake_actions = torch.cat((sticks, button_probs), dim=1)
fake_actions = generator(images, prev_actions)
discriminator_output_fake = discriminator(images_v, fake_actions, prev_actions_v)
gradient_penalty = compute_gradient_penalty(discriminator, real_actions_v.data, fake_actions.data, images_v.data, prev_actions_v.data)
d_loss = -torch.mean(discriminator_output_real) + torch.mean(discriminator_output_fake) + gradient_penalty
d_loss.backward()
optimizer_d.step()
running_loss_d += d_loss.item()
optimizer_g.zero_grad()
if i % print_step == (print_step-1):
experiment.metric("RM Train Loss Dis", running_loss_d / print_step)
#experiment.metric("RM Was Train Dist", running_avg_wass_d / print_step)
running_loss_d = 0.0
running_avg_wass_d = 0.0
if i % N_CRITIC == N_CRITIC - 1:
### Update Generator ###
# Fake labels are real for generator cost
# Needed?
#sticks, button_probs = generator(images)
#fake_actions = torch.cat((sticks, button_probs), dim=1)
for p in discriminator.parameters():
p.requires_grad = False
fake_actions = generator(images_v.data, prev_actions_v.data)
# Discriminator has been updated, pass through again
discriminator_output_gen = discriminator(images_v.data, fake_actions, prev_actions_v.data)
g_loss = -torch.mean(discriminator_output_gen)
g_loss.backward()
optimizer_g.step()
print(fake_actions)
print(real_actions_v)
l2_loss = criterion(fake_actions.data, real_actions_v.data)
print(l2_loss)
#g_loss = gen_loss #+ (LAMBDA_L2 * l2_loss)
# print statistics
running_loss_g += g_loss.item()
#running_loss_g_mse = LAMBDA_L2 * l2_loss.item()
#running_loss_d += err_d.item()
if i % print_step == (print_step-1):
experiment.metric("RM Train Loss Gen", running_loss_g / (print_step / N_CRITIC))
#experiment.metric("RM Train Loss Gen MSE", running_loss_g_mse / (print_step / N_CRITIC))
print('[%d, %5d, samples: %d] generator loss: %.8f' %
(epoch + 1, i + 1, (i+1) * BATCH_SIZE, running_loss_g / (print_step / N_CRITIC)))
running_loss_g = 0.0
running_loss_g_mse = 0.0
"""
# Check validation once per epoch
if save_on_val_perf:
avg_validation_loss, max_validation_loss = validate(val_set, generator, discriminator)
scheduler.step(avg_validation_loss)
experiment.metric("Average Validation Loss", avg_validation_loss)
experiment.metric("Max Validation Loss", max_validation_loss)
generator.train()
discriminator.train()
if (avg_validation_loss < best_average_validation_loss):
best_average_validation_loss = avg_validation_loss
print("Saving...")
torch.save({
'epoch': epoch,
'model_state_dict': generator.state_dict(),
'optimizer_state_dict': optimizer_d.state_dict(),
}, PATH)
else:
print("Loss on validation set did not improve, skipping save to avoid overfitting")
else:
print("Saving...")
torch.save({
'epoch': epoch,
'model_state_dict': generator.state_dict(),
'optimizer_state_dict': optimizer_d.state_dict(),
}, PATH)
"""
print('Finished Training')
def validate(val_set, generator, discriminator):
valloader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=True, num_workers=5)
generator.eval()
discriminator.eval()
max_loss = -100
max_loss_index = -1
max_loss_label = None
max_loss_prediction = None
max_loss_file_name = ""
for epoch in range(1):
print("Epoch: ", epoch + 1)
running_loss = 0.0
total_loss = 0.0
for i, data in enumerate(valloader, 0):
images, prev_actions, real_actions = data["image"].float(), data["current_controller_state"].float(), data["next_controller_state"].float()
batch_size = images.size(0)
if USE_GPU:
images = images.cuda()
real_actions = real_actions.cuda()
prev_actions = prev_actions.cuda()
# Fake labels are real for generator cost
discriminator_output_real = discriminator(images, real_actions, prev_actions)
# Train with fake batch
#sticks, button_probs = generator(images, prev_actions)
#fake_actions = torch.cat((sticks, button_probs), dim=1)
fake_actions = generator(images, prev_actions)
discriminator_output_fake = discriminator(images, fake_actions, prev_actions)
d_loss = -torch.mean(discriminator_output_real) + torch.mean(discriminator_output_fake)
loss = d_loss.item()
if (loss > max_loss):
print("Found new max loss %.8f for file %s" % (loss, data["file_name"]))
max_loss_index = i
max_loss_label = real_actions
max_loss_prediction = fake_actions
max_loss = loss
max_loss_file_name = data["file_name"]
# print statistics
running_loss += loss
total_loss += loss
if i % 1000 == 999:
print('[%d, %5d, samples: %d] loss: %.8f' %
(epoch + 1, i + 1, (i + 1) * 1, running_loss / (i+1)))
running_loss = 0
avg_loss = total_loss / len(val_set)
print("Average loss: %.8f" % avg_loss)
print("Sample with largest loss:")
print("Sample: %d" % max_loss_index)
print("Loss: %.8f" % max_loss)
print("Expected: ", max_loss_label)
print("Actual: ", max_loss_prediction)
print("Filename: ", max_loss_file_name)
return avg_loss, max_loss
if __name__ == "__main__":
torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)
# Normalization for ResNet
"""
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
composed_transforms = transforms.Compose([
transforms.ToTensor(),
normalize,
])
"""
composed_transforms = transforms.Compose([
transforms.ToTensor(),
])
halo_dataset = HaloReachDataset(csv_file_name=CSV_FILENAME, root_dir=DIR, use_gpu=USE_GPU, use_half=USE_HALF, transform=composed_transforms)
generator_net = neural_net.GeneratorWithAction()
discriminator_net = neural_net.ResnetImageActionDiscriminatorWGANGPWithAction()
gpu = torch.device("cuda:0")
if USE_GPU:
generator_net.to(gpu)
discriminator_net.to(gpu)
if USE_HALF:
generator_net.half()
discriminator_net.half()
#criterion = nn.BCELoss()
criterion = nn.MSELoss()
#optimizer_g = optim.SGD(generator_net.parameters(), lr=LEARNING_RATE)
#optimizer_d = optim.SGD(discriminator_net.parameters(), lr=LEARNING_RATE)
optimizer_g = optim.Adam(generator_net.parameters(), lr=LEARNING_RATE, betas=(BETA_ONE, BETA_TWO))
optimizer_d = optim.Adam(discriminator_net.parameters(), lr=LEARNING_RATE, betas=(BETA_ONE, BETA_TWO))
#optimizer_g = optim.RMSprop(generator_net.parameters(), lr=LEARNING_RATE)
#optimizer_d = optim.RMSprop(discriminator_net.parameters(), lr=LEARNING_RATE)
train_set, val_set = torch.utils.data.random_split(halo_dataset, [len(halo_dataset) - VAL_SIZE, VAL_SIZE], generator=torch.Generator().manual_seed(SEED))
exp = Experiment("Halo AI - ResNet18 - WGAN-GP - With Prev Action")
exp.param("Optimizer", "SGD")
exp.param("learning rate", LEARNING_RATE)
exp.param("Scheduler", "ReduceLROnPlateau")
exp.param("loss", "Wasserstein + MSE 30")
exp.param("Validation Set Size", len(val_set))
exp.param("Training Set Size", len(train_set))
exp.param("Batch Size", BATCH_SIZE)
train(train_set, val_set, optimizer_g, optimizer_d, criterion, generator_net, discriminator_net, exp, save_on_val_perf=True)
exp.end()