-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpytorch_membrane_net.model.yaml
60 lines (53 loc) · 2.45 KB
/
pytorch_membrane_net.model.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
name: Membrane Net
description: 3D U-Net based network to predict membranes in 3D SEM volumes.
cite:
- text: N/A
doi: N/A
authors:
- Julian Hennies
documentation: README.md
tags: [unet3d, pytorch, 3D SEM, FIB-SEM, SBEM, membrane, probabilities, EM]
# You should add a license for the repository so that your code (and consequently the model)
# can be used by others. I would suggest to use either MIT (to allow all kinds of use), Apache (to restrict commercial use)
# or GPL (to require applications that use it to be open source)
license: MIT
format_version: 0.1.0 # this is the version of the model zoo yaml format, which is currently at 0.1.0
language: python
framework: pytorch
source: pytorch_tools.piled_unets.MembraneNet
optional_kwargs:
predict: True # Set to False to get all three output channels (Usually not necessary)
#test_input: test_input.npz # this is an input tensor for the network that should be stored in this repository (in .npz format)
#test_output: test_output.npz # this is the corresponding output tensor
#covers: [] # Cover images for the model zoo website, also to be stored in this repository
inputs:
- name: raw
axes: bczyx
data_type: float32
data_range: [0, 1]
shape: [1, 1, 64, 64, 64]
outputs:
- name: membranes
axes: bczyx
data_type: float32
data_range: [0, 1]
halo: [0, 0, 16, 16, 16]
shape:
reference_input: raw
scale: [1, 1, 1, 1, 1]
offset: [0, 0, 0, 0, 0]
# TODO: Which pre- and post-processing steps do I need?
# usually normalization is enough, but this depends on your network of course.
prediction:
preprocess:
- spec: https://github.com/bioimage-io/pytorch-bioimage-io/blob/a8863571fde5caeaf79903f71f7913fd2d9a9d01/specs/transformations/EnsureTorch.transformation.yaml
- spec: https://github.com/bioimage-io/pytorch-bioimage-io/blob/a8863571fde5caeaf79903f71f7913fd2d9a9d01/specs/transformations/Cast.transformation.yaml
kwargs: {dtype: float32}
# - spec: https://github.com/bioimage-io/pytorch-bioimage-io/blob/a8863571fde5caeaf79903f71f7913fd2d9a9d01/specs/transformations/NormalizeZeroMeanUnitVariance.transformation.yaml
# kwargs: {apply_to: [0]}
weights:
source: best_model.pth
hash: {md5: a685c4a3bf58731cc5f488c9423043c3}
postprocess:
- spec: https://github.com/bioimage-io/pytorch-bioimage-io/blob/a8863571fde5caeaf79903f71f7913fd2d9a9d01/specs/transformations/EnsureNumpy.transformation.yaml
# dependencies: conda:environment.yaml