-
Notifications
You must be signed in to change notification settings - Fork 8
/
notes-03_multidimensional-posterior_bda3-03.Rmd
49 lines (35 loc) · 2.4 KB
/
notes-03_multidimensional-posterior_bda3-03.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Section 3. Multidimensional Posterior
2021-09-02
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, dpi = 300, comment = "#>")
```
## Resources
- BDA3 chapter 3 and [reading instructions](`r paste0(CM_URL, "BDA3_ch03_reading-instructions.pdf")`)
- lectures:
- ['Lecture 3. Multiparameter models, joint, marginal and conditional distribution, normal model, bioassay example, grid sampling and grid evaluation'](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=ab958b4b-e2c4-4534-8305-aad100ba191f)
- [slides](`r paste0(CM_URL, "slides_ch3.pdf")`)
- [Assignment 3](`r paste0(CM_URL, "assignment-03.pdf")`)
## Notes
### Reading instructions
- the trace of a square matrix $tr(A)$ is the sum of the diagonals
- the following property is used in derivation of 3.11: $tr(ABC) = tr(CAB) = tr(BCA)$
### Chapter 3. Introduction to multiparameter models
#### Averaging over 'nuisance parameters' {-}
- suppose the unknown variable $\theta$ is a vector of length two: $\theta= (\theta_1, \theta_2)$
- may only care about one of the variables, but the other is still required for a good model
- example model: $y | \mu, \sigma^2 \sim N(\mu, \sigma^2)$
- here, $\theta$ would be the unknown values $\mu (=\theta_1)$ and $\sigma (=\theta_2)$, but we really only care about $\mu$
- we want $p(\theta_1|y)$
- derive it from the *joint posterior density*: $p(\theta_1, \theta_2) \propto p(y|\theta_1, \theta2) p(\theta_1, \theta_2)$
- by averaging over $\theta_2$: $p(\theta_1|y) = \int p(\theta_1, \theta_2| y) d\theta_2$
- "integrate over the uncertainty in $\theta_2$"
#### Summary of elementary modeling and computation {-}
- the following is an outline of a simple Bayesian analysis
- it will change when we get to more complex models whose posteriors are estimated by more complex sampling processes
1. write the likelihood: $p(y|\theta)$
2. write the posterior density: $p(\theta|y) \propto p(\theta) p(y|\theta)$$
3. estimate the parameters $\theta$ (e.g. using MLE)
4. draw simulations $\theta^1, \dots, \theta^S$ for the posterior distribution (using the results of 3 as a starting point); use the samples to compute any other functions of $\theta$ that are of interest
5. if any predictive quantities $\tilde{y}$ are of interest, simulate $\tilde{y}^1, \dots, \tilde{y}^S$ from $p(\tilde{y} | \theta^s)$
### Lecture notes
(No extra notes were taken — some comments added directly to slides.)