-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmlp.py
executable file
·44 lines (31 loc) · 1.26 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
class MLP(torch.nn.Module):
def __init__(self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
activation: torch.nn.Module = torch.nn.ReLU(),
dropout: float = 0.20
):
super(MLP, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.num_layers = num_layers
self.activation = activation
self.dropout = dropout
dropout_layer = torch.nn.Dropout(dropout)
layer0 = torch.nn.Linear(input_dim, hidden_dim)
self.layers = [layer0, self.activation, dropout_layer]
for i in range(self.num_layers-1):
layer_i = torch.nn.Linear(hidden_dim, hidden_dim)
self.layers += [layer_i, self.activation, dropout_layer]
layer_n = torch.nn.Linear(hidden_dim, output_dim)
self.layers.append(layer_n)
self.layers = torch.nn.ModuleList(self.layers)
def forward(self, inputs):
outputs = inputs
for i, layer in enumerate(self.layers):
outputs = layer(outputs)
return outputs