forked from gboeing/osmnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
84 lines (73 loc) · 2.89 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
OSMnx setup script.
See license in LICENSE.txt.
"""
import os
from setuptools import setup
# provide a long description using reStructuredText
LONG_DESCRIPTION = r"""
**OSMnx** is a Python package that lets you download spatial data and
model, project, visualize, and analyze real-world street networks from
OpenStreetMap's APIs. Users can download and model walkable, drivable, or
bikeable urban networks with a single line of Python code, and then easily
analyze and visualize them. You can just as easily download and work with
amenities/points of interest, building footprints, elevation data, street
bearings/orientations, speed/travel time, and network routing.
Citation info: Boeing, G. 2017. `OSMnx: New Methods for Acquiring,
Constructing, Analyzing, and Visualizing Complex Street Networks`_.
*Computers, Environment and Urban Systems* 65, 126-139.
doi:10.1016/j.compenvurbsys.2017.05.004
Read the `docs`_ or see usage examples and demos on `GitHub`_.
.. _GitHub: https://github.com/gboeing/osmnx-examples
.. _docs: https://osmnx.readthedocs.io
.. _OSMnx\: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks: http://geoffboeing.com/publications/osmnx-complex-street-networks/
"""
# list of classifiers from the PyPI classifiers trove
CLASSIFIERS = [
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Intended Audience :: Science/Research",
"Topic :: Scientific/Engineering :: GIS",
"Topic :: Scientific/Engineering :: Visualization",
"Topic :: Scientific/Engineering :: Physics",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Information Analysis",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
]
DESC = (
"Retrieve, model, analyze, and visualize OpenStreetMap street networks and other spatial data"
)
# only specify install_requires if not in RTD environment
if os.getenv("READTHEDOCS") == "True":
INSTALL_REQUIRES = []
else:
with open("requirements.txt") as f:
INSTALL_REQUIRES = [line.strip() for line in f.readlines()]
# now call setup
setup(
name="osmnx",
version="1.2.2",
description=DESC,
long_description=LONG_DESCRIPTION,
long_description_content_type="text/x-rst",
classifiers=CLASSIFIERS,
url="https://github.com/gboeing/osmnx",
author="Geoff Boeing",
author_email="[email protected]",
license="MIT",
platforms="any",
packages=["osmnx"],
python_requires=">=3.8",
install_requires=INSTALL_REQUIRES,
extras_require={
"entropy": ["scipy"],
"nearest_neighbor": ["scikit-learn", "scipy"],
"raster": ["gdal", "rasterio"],
"web_map": ["folium"],
},
)