-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathaug_utils.py
354 lines (297 loc) · 13.8 KB
/
aug_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import numpy as np
import torch
import sys
from main import get_loss
sys.path.append("./emd/")
import emd_module as emd
def cutmix_r(data_batch,cfg):
r = np.random.rand(1)
if cfg.AUG.BETA > 0 and r < cfg.AUG.PROB:
lam = np.random.beta(cfg.AUG.BETA, cfg.AUG.BETA)
B = data_batch['pc'].size()[0]
rand_index = torch.randperm(B).cuda()
target_a = data_batch['label']
target_b = data_batch['label'][rand_index]
point_a = torch.zeros(B, 1024, 3)
point_b = torch.zeros(B, 1024, 3)
point_c = torch.zeros(B, 1024, 3)
point_a = data_batch['pc']
point_b = data_batch['pc'][rand_index]
point_c = data_batch['pc'][rand_index]
# point_a, point_b, point_c = point_a.to(device), point_b.to(device), point_c.to(device)
remd = emd.emdModule()
remd = remd.cuda()
dis, ind = remd(point_a, point_b, 0.005, 300)
for ass in range(B):
point_c[ass, :, :] = point_c[ass, ind[ass].long(), :]
int_lam = int(cfg.DATALOADER.MODELNET40_DGCNN.num_points * lam)
int_lam = max(1, int_lam)
gamma = np.random.choice(cfg.DATALOADER.MODELNET40_DGCNN.num_points, int_lam, replace=False, p=None)
for i2 in range(B):
data_batch['pc'][i2, gamma, :] = point_c[i2, gamma, :]
# adjust lambda to exactly match point ratio
lam = int_lam * 1.0 / cfg.DATALOADER.MODELNET40_DGCNN.num_points
# points = data_batch['pc'].transpose(2, 1)
data_batch['label_2'] = target_b
data_batch['lam'] = lam
return data_batch
# pred, trans_feat = model(points)
# loss = criterion(pred, target_a.long()) * (1. - lam) + criterion(pred, target_b.long()) * lam
def cutmix_k(data_batch,cfg):
r = np.random.rand(1)
if cfg.AUG.BETA > 0 and r < cfg.AUG.PROB:
lam = np.random.beta(cfg.AUG.BETA, cfg.AUG.BETA)
B = data_batch['pc'].size()[0]
rand_index = torch.randperm(B).cuda()
target_a = data_batch['label']
target_b = data_batch['label'][rand_index]
point_a = torch.zeros(B, 1024, 3)
point_b = torch.zeros(B, 1024, 3)
point_c = torch.zeros(B, 1024, 3)
point_a = data_batch['pc']
point_b = data_batch['pc'][rand_index]
point_c = data_batch['pc'][rand_index]
remd = emd.emdModule()
remd = remd.cuda()
dis, ind = remd(point_a, point_b, 0.005, 300)
for ass in range(B):
point_c[ass, :, :] = point_c[ass, ind[ass].long(), :]
int_lam = int(cfg.DATALOADER.MODELNET40_DGCNN.num_points * lam)
int_lam = max(1, int_lam)
random_point = torch.from_numpy(np.random.choice(1024, B, replace=False, p=None))
# kNN
ind1 = torch.tensor(range(B))
query = point_a[ind1, random_point].view(B, 1, 3)
dist = torch.sqrt(torch.sum((point_a - query.repeat(1, cfg.DATALOADER.MODELNET40_DGCNN.num_points, 1)) ** 2, 2))
idxs = dist.topk(int_lam, dim=1, largest=False, sorted=True).indices
for i2 in range(B):
data_batch['pc'][i2, idxs[i2], :] = point_c[i2, idxs[i2], :]
# adjust lambda to exactly match point ratio
lam = int_lam * 1.0 / cfg.DATALOADER.MODELNET40_DGCNN.num_points
# points = points.transpose(2, 1)
# pred, trans_feat = model(points)
# loss = criterion(pred, target_a.long()) * (1. - lam) + criterion(pred, target_b.long()) * lam
data_batch['label_2'] = target_b
data_batch['lam'] = lam
return data_batch
def mixup(data_batch,cfg):
batch_size = data_batch['pc'].size()[0]
idx_minor = torch.randperm(batch_size)
mixrates = (0.5 - np.abs(np.random.beta(cfg.AUG.MIXUPRATE, cfg.AUG.MIXUPRATE, batch_size) - 0.5))
label_main = data_batch['label']
label_minor = data_batch['label'][idx_minor]
label_new = torch.zeros(batch_size, 40)
for i in range(batch_size):
if label_main[i] == label_minor[i]: # same label
label_new[i][label_main[i]] = 1.0
else:
label_new[i][label_main[i]] = 1 - mixrates[i]
label_new[i][label_minor[i]] = mixrates[i]
label = label_new
data_minor = data_batch['pc'][idx_minor]
mix_rate = torch.tensor(mixrates).float()
mix_rate = mix_rate.unsqueeze_(1).unsqueeze_(2)
mix_rate_expand_xyz = mix_rate.expand(data_batch['pc'].shape)
remd = emd.emdModule()
remd = remd.cuda()
_, ass = remd(data_batch['pc'], data_minor, 0.005, 300)
ass = ass.long()
for i in range(batch_size):
data_minor[i] = data_minor[i][ass[i]]
data_batch['pc'] = data_batch['pc'] * (1 - mix_rate_expand_xyz) + data_minor * mix_rate_expand_xyz
data_batch['label_2'] = label_minor
data_batch['lam'] = torch.tensor(mix_rate).squeeze_()
return data_batch
def knn_points(k, xyz, query, nsample=512):
B, N, C = xyz.shape
_, S, _ = query.shape # S=1
tmp_idx = np.arange(N)
group_idx = np.repeat(tmp_idx[np.newaxis,np.newaxis,:], B, axis=0)
sqrdists = square_distance(query, xyz) # Bx1,N #제곱거리
tmp = np.sort(sqrdists, axis=2)
knn_dist = np.zeros((B,1))
for i in range(B):
knn_dist[i][0] = tmp[i][0][k]
group_idx[i][sqrdists[i]>knn_dist[i][0]]=N
# group_idx[sqrdists > radius ** 2] = N
# print("group idx : \n",group_idx)
# group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] # for torch.tensor
group_idx = np.sort(group_idx, axis=2)[:, :, :nsample]
# group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
tmp_idx = group_idx[:,:,0]
group_first = np.repeat(tmp_idx[:,np.newaxis,:], nsample, axis=2)
# repeat the first value of the idx in each batch
mask = group_idx == N
group_idx[mask] = group_first[mask]
return group_idx
def cut_points_knn(data_batch, idx, radius, nsample=512, k=512):
"""
input
points : BxNx3(=6 with normal)
idx : Bx1 one scalar(int) between 0~len(points)
output
idx : Bxn_sample
"""
B, N, C = data_batch.shape
B, S = idx.shape
query_points = np.zeros((B,1,C))
# print("idx : \n",idx)
for i in range(B):
query_points[i][0]=data_batch[i][idx[i][0]] # Bx1x3(=6 with normal)
# B x n_sample
group_idx = knn_points(k=k, xyz=data_batch[:,:,:3], query=query_points[:,:,:3], nsample=nsample)
return group_idx, query_points # group_idx: 16x?x6, query_points: 16x1x6
def cut_points(data_batch, idx, radius, nsample=512):
"""
input
points : BxNx3(=6 with normal)
idx : Bx1 one scalar(int) between 0~len(points)
output
idx : Bxn_sample
"""
B, N, C = data_batch.shape
B, S = idx.shape
query_points = np.zeros((B,1,C))
# print("idx : \n",idx)
for i in range(B):
query_points[i][0]=data_batch[i][idx[i][0]] # Bx1x3(=6 with normal)
# B x n_sample
group_idx = query_ball_point_for_rsmix(radius, nsample, data_batch[:,:,:3], query_points[:,:,:3])
return group_idx, query_points # group_idx: 16x?x6, query_points: 16x1x6
def query_ball_point_for_rsmix(radius, nsample, xyz, new_xyz):
"""
Input:
radius: local region radius
nsample: max sample number in local region
xyz: all points, [B, N, 3]
new_xyz: query points, [B, S, 3]
Return:
group_idx: grouped points index, [B, S, nsample], S=1
"""
# device = xyz.device
B, N, C = xyz.shape
_, S, _ = new_xyz.shape
# group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
tmp_idx = np.arange(N)
group_idx = np.repeat(tmp_idx[np.newaxis,np.newaxis,:], B, axis=0)
sqrdists = square_distance(new_xyz, xyz)
group_idx[sqrdists > radius ** 2] = N
# group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] # for torch.tensor
group_idx = np.sort(group_idx, axis=2)[:, :, :nsample]
# group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
tmp_idx = group_idx[:,:,0]
group_first = np.repeat(tmp_idx[:,np.newaxis,:], nsample, axis=2)
# repeat the first value of the idx in each batch
mask = group_idx == N
group_idx[mask] = group_first[mask]
return group_idx
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M]
"""
B, N, _ = src.shape
_, M, _ = dst.shape
# dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
# dist += torch.sum(src ** 2, -1).view(B, N, 1)
# dist += torch.sum(dst ** 2, -1).view(B, 1, M)
dist = -2 * np.matmul(src, dst.transpose(0, 2, 1))
dist += np.sum(src ** 2, -1).reshape(B, N, 1)
dist += np.sum(dst ** 2, -1).reshape(B, 1, M)
return dist
def pts_num_ctrl(pts_erase_idx, pts_add_idx):
'''
input : pts - to erase
pts - to add
output :pts - to add (number controled)
'''
if len(pts_erase_idx)>=len(pts_add_idx):
num_diff = len(pts_erase_idx)-len(pts_add_idx)
if num_diff == 0:
pts_add_idx_ctrled = pts_add_idx
else:
pts_add_idx_ctrled = np.append(pts_add_idx, pts_add_idx[np.random.randint(0, len(pts_add_idx), size=num_diff)])
else:
pts_add_idx_ctrled = np.sort(np.random.choice(pts_add_idx, size=len(pts_erase_idx), replace=False))
return pts_add_idx_ctrled
def rsmix(data, cfg, n_sample=512, KNN=False):
cut_rad = np.random.beta(cfg.AUG.BETA, cfg.AUG.BETA)
data_batch = data['pc'].numpy()
label_batch = data['label'].numpy()
rand_index = np.random.choice(data_batch.shape[0],data_batch.shape[0], replace=False) # label dim : (16,) for model
if len(label_batch.shape) is 1:
label_batch = np.expand_dims(label_batch, axis=1)
label_a = label_batch[:,0]
label_b = label_batch[rand_index][:,0]
data_batch_rand = data_batch[rand_index] # BxNx3(with normal=6)
rand_idx_1 = np.random.randint(0,data_batch.shape[1], (data_batch.shape[0],1))
rand_idx_2 = np.random.randint(0,data_batch.shape[1], (data_batch.shape[0],1))
if KNN:
knn_para = min(int(np.ceil(cut_rad*n_sample)),n_sample)
pts_erase_idx, query_point_1 = cut_points_knn(data_batch, rand_idx_1, cut_rad, nsample=n_sample, k=knn_para) # B x num_points_in_radius_1 x 3(or 6)
pts_add_idx, query_point_2 = cut_points_knn(data_batch_rand, rand_idx_2, cut_rad, nsample=n_sample, k=knn_para) # B x num_points_in_radius_2 x 3(or 6)
else:
pts_erase_idx, query_point_1 = cut_points(data_batch, rand_idx_1, cut_rad, nsample=n_sample) # B x num_points_in_radius_1 x 3(or 6)
pts_add_idx, query_point_2 = cut_points(data_batch_rand, rand_idx_2, cut_rad, nsample=n_sample) # B x num_points_in_radius_2 x 3(or 6)
query_dist = query_point_1[:,:,:3] - query_point_2[:,:,:3]
pts_replaced = np.zeros((1,data_batch.shape[1],data_batch.shape[2]))
lam = np.zeros(data_batch.shape[0],dtype=float)
for i in range(data_batch.shape[0]):
if pts_erase_idx[i][0][0]==data_batch.shape[1]:
tmp_pts_replaced = np.expand_dims(data_batch[i], axis=0)
lam_tmp = 0
elif pts_add_idx[i][0][0]==data_batch.shape[1]:
pts_erase_idx_tmp = np.unique(pts_erase_idx[i].reshape(n_sample,),axis=0)
tmp_pts_erased = np.delete(data_batch[i], pts_erase_idx_tmp, axis=0) # B x N-num_rad_1 x 3(or 6)
dup_points_idx = np.random.randint(0,len(tmp_pts_erased), size=len(pts_erase_idx_tmp))
tmp_pts_replaced = np.expand_dims(np.concatenate((tmp_pts_erased, data_batch[i][dup_points_idx]), axis=0), axis=0)
lam_tmp = 0
else:
pts_erase_idx_tmp = np.unique(pts_erase_idx[i].reshape(n_sample,),axis=0)
pts_add_idx_tmp = np.unique(pts_add_idx[i].reshape(n_sample,),axis=0)
pts_add_idx_ctrled_tmp = pts_num_ctrl(pts_erase_idx_tmp,pts_add_idx_tmp)
tmp_pts_erased = np.delete(data_batch[i], pts_erase_idx_tmp, axis=0) # B x N-num_rad_1 x 3(or 6)
# input("INPUT : ")
tmp_pts_to_add = np.take(data_batch_rand[i], pts_add_idx_ctrled_tmp, axis=0)
tmp_pts_to_add[:,:3] = query_dist[i]+tmp_pts_to_add[:,:3]
tmp_pts_replaced = np.expand_dims(np.vstack((tmp_pts_erased,tmp_pts_to_add)), axis=0)
lam_tmp = len(pts_add_idx_ctrled_tmp)/(len(pts_add_idx_ctrled_tmp)+len(tmp_pts_erased))
pts_replaced = np.concatenate((pts_replaced, tmp_pts_replaced),axis=0)
lam[i] = lam_tmp
data_batch_mixed = np.delete(pts_replaced, [0], axis=0)
data['pc'] = torch.FloatTensor(data_batch_mixed)
data['label'] = torch.tensor(label_a)
data['label_2'] = torch.tensor(label_b)
data['lam'] = torch.tensor(lam)
return data
def pgd(data_batch,model, task, loss_name, dataset_name, step= 7, eps=0.05, alpha=0.01):
model.eval()
data = data_batch['pc']
adv_data=data.clone()
adv_data=adv_data+(torch.rand_like(adv_data)*eps*2-eps)
adv_data.detach()
adv_data_batch = {}
for _ in range(step):
adv_data.requires_grad=True
out = model(**{'pc':adv_data})
adv_data_batch['pc'] = adv_data
adv_data_batch['label'] = data_batch['label']
model.zero_grad()
loss = get_loss(task, loss_name, adv_data_batch, out, dataset_name)
loss.backward()
with torch.no_grad():
adv_data = adv_data + alpha * adv_data.grad.sign()
delta = adv_data-data
# print(delta)
delta = torch.clamp(delta,-eps,eps)
adv_data = (data+delta).detach_()
return adv_data_batch