forked from pkmital/tensorflow_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_linear_regression.py
79 lines (66 loc) · 2.75 KB
/
02_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""Simple tutorial for using TensorFlow to compute a linear regression.
Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %% Let's create some toy data
plt.ion()
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()
# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)
# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)
# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))
# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
# Here we tell tensorflow that we want to initialize all
# the variables in the graph so we can use them
sess.run(tf.initialize_all_variables())
# Fit all training data
prev_training_cost = 0.0
for epoch_i in range(n_epochs):
for (x, y) in zip(xs, ys):
sess.run(optimizer, feed_dict={X: x, Y: y})
training_cost = sess.run(
cost, feed_dict={X: xs, Y: ys})
print(training_cost)
if epoch_i % 20 == 0:
ax.plot(xs, Y_pred.eval(
feed_dict={X: xs}, session=sess),
'k', alpha=epoch_i / n_epochs)
fig.show()
plt.draw()
# Allow the training to quit if we've reached a minimum
if np.abs(prev_training_cost - training_cost) < 0.000001:
break
prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()