-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_optionpricing.py
108 lines (92 loc) · 4.09 KB
/
example_optionpricing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright (c) 2012 Quantitative & Financial, All rights reserved
# www.quantandfinancial.com
import datasources.google as google
from structures.quote import QuoteSeries
import numpy
from math import log, exp
from datetime import datetime
# Definition of enumerators
call, put, european, american = 100, 101, 102, 103
#google.getquotesfromweb('IVV').savetofile('data/ivv.csv')
prices = QuoteSeries.loadfromfile('IVV', 'data/ivv_2012_11_05.csv').getprices()
prices = prices[-250:] # We will use last 250 trading days
# Calculation of daily continuous (logaritmic) returns
returns = []
for i in range(0, len(prices)-1):
r = log(prices[i] / prices[i-1])
returns.append(r)
# Calculation of daily and annualized volatility from daily returns
volat_d = numpy.std(returns) # Daily volatility
volat = volat_d * 250**.5 # Annualized volatility
# Calculation inputs
side = call # Option side
style = american # Option style
price = prices[-1] # Current instrument price (147.31, as of 2012/11/05)
strike = 140 # Strike price
riskfree = .0007 # Risk-free rate, Yield on 3m US Treasury Yields, as of 2012/11/05
divyield = .0199 # Dividend yield on S&P 500 (IVV), as of 2012/11/05
tte = (datetime(2012,12,22) - datetime(2012,11, 6)).days # Time to expiration in days
print('Calculation Inputs')
print('%18s : %0.3f' % ('Price', price))
print('%18s : %0.3f' % ('Strike', strike))
print('%18s : %0.3f' % ('Risk-free', riskfree))
print('%18s : %0.3f' % ('Div Yield', divyield))
print('%18s : %0.3f' % ('TTE Days', tte))
print('%18s : %0.3f' % ('Volatility', volat))
print()
# Pre-processing of inputs and calculation of per-step figures
n = 8 # Depth of binomial tree (levels are numbered from 0 to n)
tdelta = tte / (n * 365) # Time delta per one step (as fraction of year)
u = exp(volat * tdelta**.5) # Up movement per step
d = 1/u # Down movement per step
rf = exp(riskfree * tdelta) - 1 # Risk-free rate per step
dy = exp(divyield * tdelta) - 1 # Dividend yield per step
pu = (1+rf-dy-d) / (u-d) # Probability of up movement
pd = 1 - pu # Probability of down movement
print('%18s : %0.8f' % ('Node prob U', pu))
print('%18s : %0.8f' % ('Node prob D', pd))
print('%18s : %0.8f' % ('Node tdelta', tdelta))
print('%18s : %0.8f' % ('Node discount f', rf))
print()
assert(side==call or side==put)
assert(style==american or style==european)
print('Binomial Tree')
# Generate terminal nodes of binomial tree
level = []
print('Tree level %i' % n)
for i in range(0, n+1): # Iterate through nodes from highest to lowest price
# Instrument's price at the node
pr = price * d**i * u**(n-i)
# Option value at the node (depending on side)
ov = max(0.0, pr-strike) if side==call else max(0.0, strike-pr)
level.append((pr, ov))
print('Node Price %.3f, Option Value %.3f' %(pr, ov))
levels = [None,None,None] # Remember levels 0,1,2 for the greeks
# reduce binomial tree
for i in range(n-1, -1, -1): # [n-1 to 0]
levelNext = []
print('Tree level %i' % i)
for j in range(0, i+1): # Iterate through nodes from highest to lowest price
node_u, node_d = level[j], level[j+1]
# Instrument's price at the node
pr = node_d[0] / d
# Option value at the node (depending on side)
ov = (node_d[1] * pd + node_u[1] * pu) / (1 + rf)
if style==american: # American options can be exercised anytime
ov = max(ov, pr-strike if side==call else strike-pr)
levelNext.append((pr, ov))
print('Node Price %.3f, Option Value %.3f' %(pr, ov))
level = levelNext
if j<=2: levels[j]=level # save level 0,1,2 of the tree
optionvalue = levels[0][0][1]
delta = (levels[1][0][1]-levels[1][1][1]) / (levels[1][0][0]-levels[1][1][0])
delta1 = (levels[2][0][1]-levels[2][1][1]) / (levels[2][0][0]-levels[2][1][0])
delta2 = (levels[2][1][1]-levels[2][2][1]) / (levels[2][1][0]-levels[2][2][0])
gamma = (delta1-delta2) / (levels[2][0][0] - levels[2][2][0])
theta = (levels[2][1][1]-optionvalue) / (2*tdelta)
print()
print('Results')
print('Option Value %.03f' % optionvalue)
print('Delta %.03f' % delta)
print('Gamma %.03f' % gamma)
print('Theta %.03f' % theta)