-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignWorkLocationsOld.R
339 lines (273 loc) · 12.5 KB
/
assignWorkLocationsOld.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# libraries and functions -------------------------------------------------
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tidyr))
suppressPackageStartupMessages(library(data.table))
# Suppress summarise info
options(dplyr.summarise.inform = FALSE)
# rounds to the nearest number, but preserves the overall total
roundPreserveSum <- function(x) {
y <- floor(x)
indices <- tail(order(x-y), round(sum(x)) - sum(y))
y[indices] <- y[indices] + 1
y
}
adjustPr <- function(expected,actual) {
# expected=c(0.1,0.3,0.5,0.1);actual=c(0,1,1,0)
if (sum(expected)==0) expected[]<-1/length(expected)
if (sum(expected)!=1) expected <- expected/sum(expected)
if (sum(actual)==0) return(expected)
actual_normalised <- actual/sum(actual)
delta <- expected-actual_normalised
delta[delta<0] <- 0
# in case it fits perfectly
if (sum(delta)==0) delta<-expected
delta_normalised <- delta/sum(delta)
return(delta_normalised)
}
getDistCountSA3 <- function(sa3_1,sa3_2) {
# sa3_1=SA3_home;sa3_2=SA3_id
index_1=sa3DistCounterIndex[.(as.numeric(sa3_1))] %>% pull(index)
index_2=sa3DistCounterIndex[.(as.numeric(sa3_2))] %>% pull(index)
distanceCount <- data.table(distance=1:280,count=sa3DistCounter[index_1,index_2,])
return(distanceCount)
}
getWorkPr <- function(SA1_id,SA3_id) {
# SA1_id=20607113908;SA3_id=21304
SA3_home <- as.integer(substr(SA1_id,1,5))
# calculating distances
index <- distanceMatrixIndex[.(as.numeric(SA1_id))] %>%
pull(index)
distanceTable <- distanceMatrixIndexWork[sa3 == as.numeric(SA3_id)]
distanceTable$distance <- distanceMatrixWork[index,distanceTable$index]
distanceTally <- distanceTable %>%
group_by(distance) %>%
summarise(distance_proportion=1/n())
# adding distance_proportion (some distances are more common than others)
distanceTable <- distanceTable %>%
inner_join(distanceTally,by="distance")
# adding work location Pr
distanceTable <- distanceTable %>%
inner_join(workLocationsSA1,by="sa1_maincode_2016")
# adding local/SA3 distance Pr
hist_sa3 <- work_hist_sa3_wide %>%
filter(sa3_home==SA3_home,sa3_work==SA3_id)
hist_sa3 <- data.table(distance=1:280,sa3_dist_pr=as.numeric(hist_sa3[1,3:282]))
distanceTable <- distanceTable %>%
inner_join(hist_sa3,by="distance")
if(sum(distanceTable$sa3_dist_pr)>0) {
distanceTable %>%
mutate(sa3_dist_pr=sa3_dist_pr/sum(sa3_dist_pr,na.rm=T))
}
#adding global distance Pr
distanceTable <- distanceTable %>%
inner_join(work_hist_global,by="distance") %>%
mutate(global_dist_pr=global_dist_pr/sum(global_dist_pr,na.rm=T))
# now have the raw probabilities
# sa1_maincode_2016, distance, distance_proportion, work_location_pr, sa3_dist_pr, global_dist_pr
distanceTable <- distanceTable[, .(sa1_maincode_2016, distance, distance_proportion, work_location_pr, sa3_dist_pr, global_dist_pr)]
#adding the counts
distanceTableCounts <- distanceTable %>%
# work location counter
inner_join(workLocationCounter%>%rename(work_location_actual=count),by="sa1_maincode_2016") %>%
# sa3 distance counter
inner_join(getDistCountSA3(SA3_home,SA3_id)%>%rename(sa3_dist_actual=count),by="distance") %>%
# global distance counter
inner_join(globalDistCounter%>%rename(global_dist_actual=count),by="distance")
# adjust for actual counts
tableAdjusted <- distanceTableCounts
tableAdjusted$work_location_adj<-adjustPr(tableAdjusted$work_location_pr,tableAdjusted$work_location_actual)
tableAdjusted$sa3_dist_adj <-adjustPr(tableAdjusted$sa3_dist_pr, tableAdjusted$sa3_dist_actual)
tableAdjusted$global_dist_adj <-adjustPr(tableAdjusted$global_dist_pr, tableAdjusted$global_dist_actual)
tableAdjusted <- tableAdjusted[, .(sa1_maincode_2016, distance, distance_proportion, work_location_adj, sa3_dist_adj, global_dist_adj)]
return(tableAdjusted)
}
# increasing counters when a new work location is selected
setWorkCounters <- function(home_sa1,work_sa1,distanceDestination) {
# home_sa1=SA1_id;work_sa1=destinationSA1
# work location counter
currentRow <- which(workLocationCounter$sa1_maincode_2016==work_sa1)
workLocationCounter[currentRow,2] <<- workLocationCounter[currentRow,2]+1
# sa3 distance counter
index_1=sa3DistCounterIndex[.(as.integer(substr(home_sa1,1,5)))] %>% pull(index)
index_2=sa3DistCounterIndex[.(as.integer(substr(work_sa1,1,5)))] %>% pull(index)
sa3DistCounter[index_1,index_2,distanceDestination] <<- sa3DistCounter[index_1,index_2,distanceDestination]+1
# global distance counter
globalDistCounter[distanceDestination,2] <<- globalDistCounter[distanceDestination,2]+1
}
# import data -------------------------------------------------------------
work_hist_global <- readRDS("work_hist_global.rds") %>%
mutate(distance=row_number()) %>%
select(distance,global_dist_pr=pr) %>%
data.table()
work_hist_sa3 <- readRDS("work_hist_sa3.rds")
work_sa3_movement <- readRDS("work_sa3_movement.rds")
workers <- readRDS("workers_10pc.rds")
workers$sa3_home <- as.integer(substr(workers$SA1_MAINCODE_2016,1,5))
workLocationsSA1 <- read.csv("workLocationsSA1.csv") %>%
select(sa1_maincode_2016,work_location_pr=sa3_pr)
workLocationsSA1<-data.table(workLocationsSA1)
setkey(workLocationsSA1, sa1_maincode_2016)
#distances
# distanceMatrix <<- readRDS(file="data/distanceMatrix.rds") # note '<<' to make it global
distanceMatrixWork <<- readRDS(file="distanceMatrixWork.rds") # note '<<' to make it global
# Some SA1s ended up snapping their centroid to the same node in the road
# network so we need to use an index.
distanceMatrixIndex <- read.csv("distanceMatrixIndex.csv")
distanceMatrixIndex<-data.table(distanceMatrixIndex)
setkey(distanceMatrixIndex, sa1_maincode_2016)
distanceMatrixIndexWork <- read.csv("distanceMatrixIndexWork.csv")
distanceMatrixIndexWork<-data.table(distanceMatrixIndexWork)
setkey(distanceMatrixIndexWork, sa1_maincode_2016)
# assign work SA3 regions -------------------------------------------------
work_hist_sa3_wide <- work_hist_sa3 %>%
pivot_wider(id_cols=c(sa3_home,sa3_work),
names_from=range_value,
values_from=pr) %>%
data.table()
tmp<-work_hist_sa3 %>%
filter(is.nan(pr))
home_count_sa3 <- workers %>%
mutate(sa3_home=as.integer(substr(workers$SA1_MAINCODE_2016,1,5))) %>%
group_by(sa3_home) %>%
summarise(home_count=n()) %>%
ungroup()
# calculate home to work sa3 counts
work_count_sa3 <- work_sa3_movement %>%
select(sa3_home,sa3_work,pr_sa3) %>%
inner_join(home_count_sa3) %>%
# filter(sa3_home==20601) %>%
group_by(sa3_home) %>%
mutate(work_count=roundPreserveSum(home_count*pr_sa3)) %>%
ungroup() %>%
select(sa3_home,sa3_work,work_count)
# summarise(home_count=max(home_count),
# work_count=sum(work_count))
set.seed(10000)
work_sa3 <- work_count_sa3 %>%
uncount(weights=work_count) %>%
group_by(sa3_home) %>%
mutate(sa3_order=sample(1:n())) %>%
ungroup()
workers_sa3 <- workers %>%
arrange(PlanId) %>%
group_by(sa3_home) %>%
mutate(sa3_order=row_number()) %>%
ungroup() %>%
left_join(work_sa3, by=c("sa3_home","sa3_order"))
#
# # initialise counters -----------------------------------------------------
#
# workLocationCounter <- distanceMatrixIndexWork %>%
# select(sa1_maincode_2016) %>%
# mutate(count=0)
#
# sa3DistCounter <- array(data=0, dim=c(40, 40, 280))
# sa3DistCounterIndex <- data.table(sa3=distanceMatrixIndexWork$sa3%>%unique()%>%sort()) %>%
# mutate(index=row_number())
# setkey(sa3DistCounterIndex, sa3)
#
# globalDistCounter <- data.table(distance=1:280,count=0)
#
# # assign work sa1 regions -------------------------------------------------
#
# SA1_id=20607113908
# SA3_id=21304
#
# workPr <- getWorkPr(SA1_id,SA3_id) %>%
# mutate(overal_pr=(work_location_adj+2*sa3_dist_adj+2*global_dist_adj)/distance_proportion) %>%
# mutate(overal_pr=overal_pr/sum(overal_pr,na.rm=T)) %>%
# select(sa1_maincode_2016,distance,overal_pr)
# destinationSA1 <- sample(workPr$sa1_maincode_2016, size=1, prob=workPr$overal_pr)
# distanceDestination <- workPr[sa1_maincode_2016==destinationSA1]$distance
# setWorkCounters(SA1_id,destinationSA1,distanceDestination)
# balanced ----------------------------------------------------------------
set.seed(10000)
workLocationCounter <<- distanceMatrixIndexWork%>%select(sa1_maincode_2016)%>%mutate(count=0)
sa3DistCounter <<- array(data=0, dim=c(40, 40, 280))
sa3DistCounterIndex <<- data.table(sa3=distanceMatrixIndexWork$sa3%>%unique()%>%sort())%>%mutate(index=row_number())
setkey(sa3DistCounterIndex, sa3)
globalDistCounter <<- data.table(distance=1:280,count=0)
# workers_sa1 <- workers_sa3[1:1000,] %>% mutate(sa1_work=NA)
workers_sa1 <- workers_sa3[sample(nrow(workers_sa3)),] %>% mutate(sa1_work=NA)
i<-0
start_time <- Sys.time()
while(i<nrow(workers_sa1)) {
i<-i+1
SA1_id <- workers_sa1$SA1_MAINCODE_2016[i]
SA3_id <- workers_sa1$sa3_work[i]
workPr <- getWorkPr(SA1_id,SA3_id) %>%
mutate(overal_pr=(work_location_adj+2*sa3_dist_adj+2*global_dist_adj)/distance_proportion) %>%
mutate(overal_pr=overal_pr/sum(overal_pr,na.rm=T)) %>%
select(sa1_maincode_2016,distance,overal_pr)
destinationSA1 <- sample(workPr$sa1_maincode_2016, size=1, prob=workPr$overal_pr)
distanceDestination <- workPr[sa1_maincode_2016==destinationSA1]$distance
setWorkCounters(SA1_id,destinationSA1,distanceDestination)
workers_sa1[i,]$sa1_work <- destinationSA1
if(i%%1000==0) cat(paste0("balanced ",i," at ",Sys.time(),"\n"))
}
end_time <- Sys.time()
end_time - start_time
saveRDS(workLocationCounter,"workLocationCounter_balanced.rds")
saveRDS(sa3DistCounter,"sa3DistCounter_balanced.rds")
saveRDS(globalDistCounter,"globalDistCounter_balanced.rds")
saveRDS(workers_sa1,"workers_sa1_balanced.rds")
# local distance ----------------------------------------------------------
set.seed(10000)
workLocationCounter <<- distanceMatrixIndexWork%>%select(sa1_maincode_2016)%>%mutate(count=0)
sa3DistCounter <<- array(data=0, dim=c(40, 40, 280))
sa3DistCounterIndex <<- data.table(sa3=distanceMatrixIndexWork$sa3%>%unique()%>%sort())%>%mutate(index=row_number())
setkey(sa3DistCounterIndex, sa3)
globalDistCounter <<- data.table(distance=1:280,count=0)
workers_sa1 <- workers_sa3[sample(nrow(workers_sa3)),] %>% mutate(sa1_work=NA)
i<-0
start_time <- Sys.time()
while(i<nrow(workers_sa1)) {
i<-i+1
SA1_id <- workers_sa1$SA1_MAINCODE_2016[i]
SA3_id <- workers_sa1$sa3_work[i]
workPr <- getWorkPr(SA1_id,SA3_id) %>%
mutate(overal_pr=(sa3_dist_adj)/distance_proportion) %>%
mutate(overal_pr=overal_pr/sum(overal_pr,na.rm=T)) %>%
select(sa1_maincode_2016,distance,overal_pr)
destinationSA1 <- sample(workPr$sa1_maincode_2016, size=1, prob=workPr$overal_pr)
distanceDestination <- workPr[sa1_maincode_2016==destinationSA1]$distance
setWorkCounters(SA1_id,destinationSA1,distanceDestination)
workers_sa1[i,]$sa1_work <- destinationSA1
if(i%%1000==0) cat(paste0("local ",i," at ",Sys.time(),"\n"))
}
end_time <- Sys.time()
end_time - start_time
saveRDS(workLocationCounter,"workLocationCounter_local.rds")
saveRDS(sa3DistCounter,"sa3DistCounter_local.rds")
saveRDS(globalDistCounter,"globalDistCounter_local.rds")
saveRDS(workers_sa1,"workers_sa1_local.rds")
# global distance ----------------------------------------------------------
set.seed(10000)
workLocationCounter <<- distanceMatrixIndexWork%>%select(sa1_maincode_2016)%>%mutate(count=0)
sa3DistCounter <<- array(data=0, dim=c(40, 40, 280))
sa3DistCounterIndex <<- data.table(sa3=distanceMatrixIndexWork$sa3%>%unique()%>%sort())%>%mutate(index=row_number())
setkey(sa3DistCounterIndex, sa3)
globalDistCounter <<- data.table(distance=1:280,count=0)
workers_sa1 <- workers_sa3[sample(nrow(workers_sa3)),] %>% mutate(sa1_work=NA)
i<-0
start_time <- Sys.time()
while(i<nrow(workers_sa1)) {
i<-i+1
SA1_id <- workers_sa1$SA1_MAINCODE_2016[i]
SA3_id <- workers_sa1$sa3_work[i]
workPr <- getWorkPr(SA1_id,SA3_id) %>%
mutate(overal_pr=(global_dist_adj)/distance_proportion) %>%
mutate(overal_pr=overal_pr/sum(overal_pr,na.rm=T)) %>%
select(sa1_maincode_2016,distance,overal_pr)
destinationSA1 <- sample(workPr$sa1_maincode_2016, size=1, prob=workPr$overal_pr)
distanceDestination <- workPr[sa1_maincode_2016==destinationSA1]$distance
setWorkCounters(SA1_id,destinationSA1,distanceDestination)
workers_sa1[i,]$sa1_work <- destinationSA1
if(i%%1000==0) cat(paste0("global ",i," at ",Sys.time(),"\n"))
}
end_time <- Sys.time()
end_time - start_time
saveRDS(workLocationCounter,"workLocationCounter_global.rds")
saveRDS(sa3DistCounter,"sa3DistCounter_global.rds")
saveRDS(globalDistCounter,"globalDistCounter_global.rds")
saveRDS(workers_sa1,"workers_sa1_global.rds")