-
Notifications
You must be signed in to change notification settings - Fork 2
/
spooky.c
526 lines (478 loc) · 15.1 KB
/
spooky.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
//
// SpookyHash - 128-bit noncryptographic hash function
//
// Written in 2012 by Bob Jenkins
//
// Converted to C in 2015 by Joergen Ibsen
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to the
// public domain worldwide. This software is distributed without any
// warranty. <http://creativecommons.org/publicdomain/zero/1.0/>
//
// Original comment from SpookyV2.cpp by Bob Jenkins:
//
// Spooky Hash
// A 128-bit noncryptographic hash, for checksums and table lookup
// By Bob Jenkins. Public domain.
// Oct 31 2010: published framework, disclaimer ShortHash isn't right
// Nov 7 2010: disabled ShortHash
// Oct 31 2011: replace End, ShortMix, ShortEnd, enable ShortHash again
// April 10 2012: buffer overflow on platforms without unaligned reads
// July 12 2012: was passing out variables in final to in/out in short
// July 30 2012: I reintroduced the buffer overflow
// August 5 2012: SpookyV2: d = should be d += in short hash, and remove extra mix from long hash
#include "spooky.h"
#include <memory.h>
#include <stdbool.h>
#define ALLOW_UNALIGNED_READS 1
//
// SC_CONST: a constant which:
// - is not zero
// - is odd
// - is a not-very-regular mix of 1's and 0's
// - does not need any other special mathematical properties
//
#define SC_CONST 0xDEADBEEFDEADBEEFULL
#define ROTL64(x, k) (((x) << (k)) | ((x) >> (64 - (k))))
#ifdef _MSC_VER
# define restrict __restrict
# define inline __forceinline
#endif
static bool
spooky_is_aligned(const void *p, size_t size)
{
return (uintptr_t) p % size == 0;
}
static bool
spooky_is_little_endian(void)
{
const union {
uint32_t i;
uint8_t c[sizeof(uint32_t)];
} x = { 1 };
return x.c[0];
}
//
// Read uint64_t in little-endian order.
//
static inline uint64_t
spooky_read_le64(const uint64_t *s)
{
if (spooky_is_little_endian()) {
uint64_t v;
memcpy(&v, s, sizeof(v));
return v;
}
else {
const uint8_t *p = (const uint8_t *) s;
return (uint64_t) p[0]
| ((uint64_t) p[1] << 8)
| ((uint64_t) p[2] << 16)
| ((uint64_t) p[3] << 24)
| ((uint64_t) p[4] << 32)
| ((uint64_t) p[5] << 40)
| ((uint64_t) p[6] << 48)
| ((uint64_t) p[7] << 56);
}
}
//
// This is used if the input is 96 bytes long or longer.
//
// The internal state is fully overwritten every 96 bytes.
// Every input bit appears to cause at least 128 bits of entropy
// before 96 other bytes are combined, when run forward or backward
// For every input bit,
// Two inputs differing in just that input bit
// Where "differ" means xor or subtraction
// And the base value is random
// When run forward or backwards one Mix
// I tried 3 pairs of each; they all differed by at least 212 bits.
//
static inline void
spooky_mix(const uint64_t *restrict data, uint64_t *restrict s)
{
s[0] += spooky_read_le64(&data[0]); s[2] ^= s[10];
s[11] ^= s[0]; s[0] = ROTL64(s[0], 11); s[11] += s[1];
s[1] += spooky_read_le64(&data[1]); s[3] ^= s[11];
s[0] ^= s[1]; s[1] = ROTL64(s[1], 32); s[0] += s[2];
s[2] += spooky_read_le64(&data[2]); s[4] ^= s[0];
s[1] ^= s[2]; s[2] = ROTL64(s[2], 43); s[1] += s[3];
s[3] += spooky_read_le64(&data[3]); s[5] ^= s[1];
s[2] ^= s[3]; s[3] = ROTL64(s[3], 31); s[2] += s[4];
s[4] += spooky_read_le64(&data[4]); s[6] ^= s[2];
s[3] ^= s[4]; s[4] = ROTL64(s[4], 17); s[3] += s[5];
s[5] += spooky_read_le64(&data[5]); s[7] ^= s[3];
s[4] ^= s[5]; s[5] = ROTL64(s[5], 28); s[4] += s[6];
s[6] += spooky_read_le64(&data[6]); s[8] ^= s[4];
s[5] ^= s[6]; s[6] = ROTL64(s[6], 39); s[5] += s[7];
s[7] += spooky_read_le64(&data[7]); s[9] ^= s[5];
s[6] ^= s[7]; s[7] = ROTL64(s[7], 57); s[6] += s[8];
s[8] += spooky_read_le64(&data[8]); s[10] ^= s[6];
s[7] ^= s[8]; s[8] = ROTL64(s[8], 55); s[7] += s[9];
s[9] += spooky_read_le64(&data[9]); s[11] ^= s[7];
s[8] ^= s[9]; s[9] = ROTL64(s[9], 54); s[8] += s[10];
s[10] += spooky_read_le64(&data[10]); s[0] ^= s[8];
s[9] ^= s[10]; s[10] = ROTL64(s[10], 22); s[9] += s[11];
s[11] += spooky_read_le64(&data[11]); s[1] ^= s[9];
s[10] ^= s[11]; s[11] = ROTL64(s[11], 46); s[10] += s[0];
}
//
// Mix all 12 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3%
// For every pair of input bits,
// with probability 50 +- 3%
//
// This does not rely on the last Mix() call having already mixed some.
// Two iterations was almost good enough for a 64-bit result, but a
// 128-bit result is reported, so End() does three iterations.
//
static inline void
spooky_end_partial(uint64_t *h)
{
h[11] += h[1]; h[2] ^= h[11]; h[1] = ROTL64(h[1], 44);
h[0] += h[2]; h[3] ^= h[0]; h[2] = ROTL64(h[2], 15);
h[1] += h[3]; h[4] ^= h[1]; h[3] = ROTL64(h[3], 34);
h[2] += h[4]; h[5] ^= h[2]; h[4] = ROTL64(h[4], 21);
h[3] += h[5]; h[6] ^= h[3]; h[5] = ROTL64(h[5], 38);
h[4] += h[6]; h[7] ^= h[4]; h[6] = ROTL64(h[6], 33);
h[5] += h[7]; h[8] ^= h[5]; h[7] = ROTL64(h[7], 10);
h[6] += h[8]; h[9] ^= h[6]; h[8] = ROTL64(h[8], 13);
h[7] += h[9]; h[10] ^= h[7]; h[9] = ROTL64(h[9], 38);
h[8] += h[10]; h[11] ^= h[8]; h[10] = ROTL64(h[10], 53);
h[9] += h[11]; h[0] ^= h[9]; h[11] = ROTL64(h[11], 42);
h[10] += h[0]; h[1] ^= h[10]; h[0] = ROTL64(h[0], 54);
}
static inline void
spooky_end(const uint64_t *restrict data, uint64_t *restrict h)
{
h[0] += spooky_read_le64(&data[0]);
h[1] += spooky_read_le64(&data[1]);
h[2] += spooky_read_le64(&data[2]);
h[3] += spooky_read_le64(&data[3]);
h[4] += spooky_read_le64(&data[4]);
h[5] += spooky_read_le64(&data[5]);
h[6] += spooky_read_le64(&data[6]);
h[7] += spooky_read_le64(&data[7]);
h[8] += spooky_read_le64(&data[8]);
h[9] += spooky_read_le64(&data[9]);
h[10] += spooky_read_le64(&data[10]);
h[11] += spooky_read_le64(&data[11]);
spooky_end_partial(h);
spooky_end_partial(h);
spooky_end_partial(h);
}
//
// The goal is for each bit of the input to expand into 128 bits of
// apparent entropy before it is fully overwritten.
// n trials both set and cleared at least m bits of h0 h1 h2 h3
// n: 2 m: 29
// n: 3 m: 46
// n: 4 m: 57
// n: 5 m: 107
// n: 6 m: 146
// n: 7 m: 152
// when run forwards or backwards
// for all 1-bit and 2-bit diffs
// with diffs defined by either xor or subtraction
// with a base of all zeros plus a counter, or plus another bit, or random
//
static inline void
spooky_short_mix(uint64_t *h)
{
h[2] = ROTL64(h[2], 50); h[2] += h[3]; h[0] ^= h[2];
h[3] = ROTL64(h[3], 52); h[3] += h[0]; h[1] ^= h[3];
h[0] = ROTL64(h[0], 30); h[0] += h[1]; h[2] ^= h[0];
h[1] = ROTL64(h[1], 41); h[1] += h[2]; h[3] ^= h[1];
h[2] = ROTL64(h[2], 54); h[2] += h[3]; h[0] ^= h[2];
h[3] = ROTL64(h[3], 48); h[3] += h[0]; h[1] ^= h[3];
h[0] = ROTL64(h[0], 38); h[0] += h[1]; h[2] ^= h[0];
h[1] = ROTL64(h[1], 37); h[1] += h[2]; h[3] ^= h[1];
h[2] = ROTL64(h[2], 62); h[2] += h[3]; h[0] ^= h[2];
h[3] = ROTL64(h[3], 34); h[3] += h[0]; h[1] ^= h[3];
h[0] = ROTL64(h[0], 5); h[0] += h[1]; h[2] ^= h[0];
h[1] = ROTL64(h[1], 36); h[1] += h[2]; h[3] ^= h[1];
}
//
// Mix all 4 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3% (it is probably better than that)
// For every pair of input bits,
// with probability 50 +- .75% (the worst case is approximately that)
//
static inline void
spooky_short_end(uint64_t *h)
{
h[3] ^= h[2]; h[2] = ROTL64(h[2], 15); h[3] += h[2];
h[0] ^= h[3]; h[3] = ROTL64(h[3], 52); h[0] += h[3];
h[1] ^= h[0]; h[0] = ROTL64(h[0], 26); h[1] += h[0];
h[2] ^= h[1]; h[1] = ROTL64(h[1], 51); h[2] += h[1];
h[3] ^= h[2]; h[2] = ROTL64(h[2], 28); h[3] += h[2];
h[0] ^= h[3]; h[3] = ROTL64(h[3], 9); h[0] += h[3];
h[1] ^= h[0]; h[0] = ROTL64(h[0], 47); h[1] += h[0];
h[2] ^= h[1]; h[1] = ROTL64(h[1], 54); h[2] += h[1];
h[3] ^= h[2]; h[2] = ROTL64(h[2], 32); h[3] += h[2];
h[0] ^= h[3]; h[3] = ROTL64(h[3], 25); h[0] += h[3];
h[1] ^= h[0]; h[0] = ROTL64(h[0], 63); h[1] += h[0];
}
//
// short hash ... it could be used on any message,
// but it's used by Spooky just for short messages.
//
static void
spooky_short(const void *restrict message, size_t length,
uint64_t *restrict hash1, uint64_t *restrict hash2)
{
uint64_t buf[2 * SC_NUMVARS];
union {
const uint8_t *p8;
uint64_t *p64;
} u;
u.p8 = (const uint8_t *) message;
if (ALLOW_UNALIGNED_READS == 0 && !spooky_is_aligned(u.p8, 8)) {
memcpy(buf, message, length);
u.p64 = buf;
}
size_t left = length % 32;
uint64_t h[4];
h[0] = *hash1;
h[1] = *hash2;
h[2] = SC_CONST;
h[3] = SC_CONST;
if (length > 15) {
const uint64_t *end = u.p64 + (length / 32) * 4;
// handle all complete sets of 32 bytes
for (; u.p64 < end; u.p64 += 4) {
h[2] += spooky_read_le64(&u.p64[0]);
h[3] += spooky_read_le64(&u.p64[1]);
spooky_short_mix(h);
h[0] += spooky_read_le64(&u.p64[2]);
h[1] += spooky_read_le64(&u.p64[3]);
}
//Handle the case of 16+ remaining bytes.
if (left >= 16) {
h[2] += spooky_read_le64(&u.p64[0]);
h[3] += spooky_read_le64(&u.p64[1]);
spooky_short_mix(h);
u.p64 += 2;
left -= 16;
}
}
// Handle the last 0..15 bytes, and its length
h[3] += ((uint64_t) length) << 56;
switch (left) {
case 15:
h[3] += ((uint64_t) u.p8[14]) << 48;
case 14:
h[3] += ((uint64_t) u.p8[13]) << 40;
case 13:
h[3] += ((uint64_t) u.p8[12]) << 32;
case 12:
h[3] += ((uint64_t) u.p8[11]) << 24;
case 11:
h[3] += ((uint64_t) u.p8[10]) << 16;
case 10:
h[3] += ((uint64_t) u.p8[9]) << 8;
case 9:
h[3] += (uint64_t) u.p8[8];
case 8:
h[2] += spooky_read_le64(&u.p64[0]);
break;
case 7:
h[2] += ((uint64_t) u.p8[6]) << 48;
case 6:
h[2] += ((uint64_t) u.p8[5]) << 40;
case 5:
h[2] += ((uint64_t) u.p8[4]) << 32;
case 4:
h[2] += ((uint64_t) u.p8[3]) << 24;
case 3:
h[2] += ((uint64_t) u.p8[2]) << 16;
case 2:
h[2] += ((uint64_t) u.p8[1]) << 8;
case 1:
h[2] += (uint64_t) u.p8[0];
break;
case 0:
h[2] += SC_CONST;
h[3] += SC_CONST;
}
spooky_short_end(h);
*hash1 = h[0];
*hash2 = h[1];
}
uint64_t
spooky_hash64(const void *message, size_t length, uint64_t seed)
{
uint64_t hash1 = seed;
spooky_hash128(message, length, &hash1, &seed);
return hash1;
}
uint32_t
spooky_hash32(const void *message, size_t length, uint32_t seed)
{
uint64_t hash1 = seed, hash2 = seed;
spooky_hash128(message, length, &hash1, &hash2);
return (uint32_t) hash1;
}
// do the whole hash in one call
void
spooky_hash128(const void *restrict message, size_t length,
uint64_t *restrict hash1, uint64_t *restrict hash2)
{
if (length < SC_BUFSIZE) {
spooky_short(message, length, hash1, hash2);
return;
}
uint64_t h[SC_NUMVARS];
uint64_t buf[SC_NUMVARS];
uint64_t *end;
union {
const uint8_t *p8;
uint64_t *p64;
} u;
size_t left;
h[0] = h[3] = h[6] = h[9] = *hash1;
h[1] = h[4] = h[7] = h[10] = *hash2;
h[2] = h[5] = h[8] = h[11] = SC_CONST;
u.p8 = (const uint8_t *) message;
end = u.p64 + (length / SC_BLOCKSIZE) * SC_NUMVARS;
// handle all whole SC_BLOCKSIZE blocks of bytes
if (ALLOW_UNALIGNED_READS || spooky_is_aligned(u.p8, 8)) {
do {
spooky_mix(u.p64, h);
u.p64 += SC_NUMVARS;
} while (u.p64 < end);
}
else {
do {
memcpy(buf, u.p64, SC_BLOCKSIZE);
spooky_mix(buf, h);
u.p64 += SC_NUMVARS;
} while (u.p64 < end);
}
// handle the last partial block of SC_BLOCKSIZE bytes
left = length - ((const uint8_t *) end - (const uint8_t *) message);
memcpy(buf, end, left);
memset(((uint8_t *) buf) + left, 0, SC_BLOCKSIZE - left);
((uint8_t *) buf)[SC_BLOCKSIZE - 1] = (uint8_t) left;
// do some final mixing
spooky_end(buf, h);
*hash1 = h[0];
*hash2 = h[1];
}
// init spooky state
void
spooky_init(struct spooky_state *state, uint64_t seed1, uint64_t seed2)
{
state->length = 0;
state->left = 0;
state->state[0] = seed1;
state->state[1] = seed2;
}
// add a message fragment to the state
void
spooky_update(struct spooky_state *restrict state,
const void *restrict message, size_t length)
{
uint64_t h[SC_NUMVARS];
size_t newLength = length + state->left;
uint8_t left;
union {
const uint8_t *p8;
uint64_t *p64;
} u;
const uint64_t *end;
// Is this message fragment too short? If it is, stuff it away.
if (newLength < SC_BUFSIZE) {
memcpy(&((uint8_t *) state->data)[state->left], message, length);
state->length = length + state->length;
state->left = (uint8_t) newLength;
return;
}
// init the variables
if (state->length < SC_BUFSIZE) {
h[0] = h[3] = h[6] = h[9] = state->state[0];
h[1] = h[4] = h[7] = h[10] = state->state[1];
h[2] = h[5] = h[8] = h[11] = SC_CONST;
}
else {
memcpy(h, state->state, sizeof(state->state));
}
state->length = length + state->length;
// if we've got anything stuffed away, use it now
if (state->left) {
uint8_t prefix = SC_BUFSIZE - state->left;
memcpy(&(((uint8_t *) state->data)[state->left]), message, prefix);
u.p64 = state->data;
spooky_mix(u.p64, h);
spooky_mix(&u.p64[SC_NUMVARS], h);
u.p8 = ((const uint8_t *) message) + prefix;
length -= prefix;
}
else {
u.p8 = (const uint8_t *) message;
}
// handle all whole blocks of SC_BLOCKSIZE bytes
end = u.p64 + (length / SC_BLOCKSIZE) * SC_NUMVARS;
left = (uint8_t) (length - ((const uint8_t *) end - u.p8));
if (ALLOW_UNALIGNED_READS || spooky_is_aligned(u.p8, 8)) {
while (u.p64 < end) {
spooky_mix(u.p64, h);
u.p64 += SC_NUMVARS;
}
}
else {
while (u.p64 < end) {
memcpy(state->data, u.p8, SC_BLOCKSIZE);
spooky_mix(state->data, h);
u.p64 += SC_NUMVARS;
}
}
// stuff away the last few bytes
state->left = left;
memcpy(state->data, end, left);
// stuff away the variables
memcpy(state->state, h, sizeof(state->state));
}
// report the hash for the concatenation of all message fragments so far
void
spooky_final(struct spooky_state *restrict state,
uint64_t *restrict hash1, uint64_t *restrict hash2)
{
// init the variables
if (state->length < SC_BUFSIZE) {
*hash1 = state->state[0];
*hash2 = state->state[1];
spooky_short(state->data, state->length, hash1, hash2);
return;
}
const uint64_t *data = (const uint64_t *) state->data;
uint8_t left = state->left;
uint64_t h[SC_NUMVARS];
memcpy(h, state->state, sizeof(state->state));
if (left >= SC_BLOCKSIZE) {
// m_data can contain two blocks; handle any whole first block
spooky_mix(data, h);
data += SC_NUMVARS;
left -= SC_BLOCKSIZE;
}
// mix in the last partial block, and the length mod SC_BLOCKSIZE
memset(&((uint8_t *) data)[left], 0, (SC_BLOCKSIZE - left));
((uint8_t *) data)[SC_BLOCKSIZE - 1] = left;
// do some final mixing
spooky_end(data, h);
*hash1 = h[0];
*hash2 = h[1];
}