-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlocate.cpp
117 lines (86 loc) · 3.37 KB
/
locate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include <locate.h>
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
const double c = 3e8;
// 计算定位结果的函数
void locate(const std::vector<std::vector<double>>& BS_Sets, int N, const std::vector<double>& R, float r_zp[]) {
std::vector<double> k(N);
std::vector<double> hh(N - 1);
// 计算 k
for (int i = 0; i < N; ++i) {
k[i] = BS_Sets[0][i] * BS_Sets[0][i] + BS_Sets[1][i] * BS_Sets[1][i];
}
// 计算 h
for (int i = 0; i < N - 1; ++i) {
hh[i] = 0.5 * (R[i] * R[i] - k[i + 1] + k[0]);
}
Eigen::VectorXd h(N - 1); // h
for (int i = 0; i < N - 1; ++i) {
h(i) = hh[i];
}
/* std::cout << h << std::endl;*/
std::vector<std::vector<double>> Gaa(N - 1, std::vector<double>(3));
// 计算 Ga
for (int i = 0; i < N - 1; ++i) {
Gaa[i][0] = -(BS_Sets[0][i + 1] - BS_Sets[0][0]);
Gaa[i][1] = -(BS_Sets[1][i + 1] - BS_Sets[1][0]);
Gaa[i][2] = R[i];
}
Eigen::MatrixXd Ga(N - 1, 3); // Ga
Eigen::MatrixXd GaT(3, N - 1); // Ga
for (int i = 0; i < N - 1; ++i) {
for (int j = 0; j < 3; ++j) {
Ga(i, j) = Gaa[i][j];
}
}
GaT = Ga.transpose();
//// 打印 Ga 的值
////std::cout << GaT << std::endl;
//std::cout << Ga<< std::endl;
Eigen::MatrixXd Q = Eigen::MatrixXd::Identity(N - 1, N - 1); // Q
/* std::cout << Q << std::endl;*/
Eigen::MatrixXd pinv_GaT_Q_Ga = (Ga.transpose() * Q.inverse() * Ga).jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(Eigen::MatrixXd::Identity(3, 3));
/* std::cout << pinv_GaT_Q_Ga << std::endl;*/
Eigen::VectorXd za0 = pinv_GaT_Q_Ga * Ga.transpose() * Q.inverse() * h;
// 输出结果
/* std::cout << "za0:" << std::endl;
std::cout << za0 << std::endl;*/
Eigen::VectorXd B(N - 1);
for (int i = 1; i < N; ++i) {
B(i - 1) = std::sqrt(std::pow(BS_Sets[0][i] - za0(0), 2) + std::pow(BS_Sets[1][i] - za0(1), 2));
}
// 将 B 转换为对角矩阵
Eigen::MatrixXd B_diag = B.asDiagonal();
// 计算 S
Eigen::MatrixXd S = c * c * B_diag * Eigen::MatrixXd::Identity(N - 1, N - 1) * B_diag;
// 计算 za1
Eigen::VectorXd za1 = (Ga.transpose() * S.inverse() * Ga).inverse() * Ga.transpose() * S.inverse() * h;
//std::cout << "za1: " << za1 << std::endl;
double x1 = BS_Sets[0][0];
double y1 = BS_Sets[1][0];
Eigen::VectorXd h2(3);
h2 << pow(za1(0, 0) - x1, 2),
pow(za1(1, 0) - y1, 2),
pow(za1(2, 0), 2);
Eigen::MatrixXd Ga2(3, 2);
Ga2 << 1, 0,
0, 1,
1, 1;
Eigen::MatrixXd B2(3, 3);
B2 << za1(0, 0) - x1, 0, 0,
0, za1(1, 0) - y1, 0,
0, 0, za1(2, 0);
Eigen::MatrixXd S2 = 4 * B2 * pinv_GaT_Q_Ga * B2;
Eigen::VectorXd za2 = (Ga2.transpose() * (S2.inverse()) * Ga2).inverse() * (Ga2.transpose() * (S2.inverse()) * h2);
Eigen::MatrixXd zp(2, 2);
zp << sqrt(fabs(za2(0))) + x1, -sqrt(fabs(za2(0))) + x1,
sqrt(fabs(za2(1))) + y1, -sqrt(fabs(za2(1))) + y1;
//std::cout << "初始化WLS结果 x: " << za0(0) << " y: " << za0(1) << std::endl;
//std::cout << "第一次WLS结果 x: " << za1(0) << " y: " << za1(1) << std::endl;
std::cout << "第二次WLS结果[1] x: " << zp(0, 0) << " y: " << zp(1, 0) << std::endl;
//std::cout << "第二次WLS结果[2] x: " << zp(0, 1) << " y: " << zp(1, 1) << std::endl;
r_zp[0] = zp(0, 0);
r_zp[1] = zp(0, 1);
return;
}