-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
422 lines (345 loc) · 14.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import torch
import numpy as np
import imageio
import cv2
import json
import os
from pathlib import Path
from torch.utils.tensorboard import SummaryWriter
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default='../dataset/high-simple',
help='path to datatset folder')
parser.add_argument('--nerf_config', type=str, default='mega-nerf-output/configs/hparams/high/hparams_simple.txt',
help='mega-nerf config file path')
parser.add_argument("--output_dir", type=str, default='./output/',
help='where to store output logs, images, videos')
parser.add_argument("--container_path", type=str, default=None,
help='path to merged nerf model')
parser.add_argument("--video", action='store_false', help='output video of pose optimization')
parser.add_argument("--bsz", type=int, default=1)
parser.add_argument("--nworkers", type=int, default=0)
parser.add_argument("--pose_regressor_input", type=str, default=None,
help='pose_regressor module output file')
# iNeRF options
parser.add_argument("--dil_iter", type=int, default=1,
help='Number of iterations of dilation process')
parser.add_argument("--kernel_size", type=int, default=3,
help='Kernel size for dilation')
parser.add_argument("--batch_size", type=int, default=2048,
help='Number of sampled rays per gradient step')
parser.add_argument("--lrate", type=float, default=0.01,
help='Initial learning rate')
parser.add_argument("--sampling_strategy", type=str, default='random',
help='options: random / interest_point / interest_region')
parser.add_argument("--steps", type=int, default=500,
help='optimization steps')
# parameters to define initial pose
parser.add_argument("--delta_psi", type=float, default=0.0,
help='Rotate camera around x axis degree')
parser.add_argument("--delta_phi", type=float, default=0.0,
help='Rotate camera around z axis degree')
parser.add_argument("--delta_theta", type=float, default=0.0,
help='Rotate camera around y axis degree')
parser.add_argument("--delta_x", type=float, default=0.0,
help='translation of camera m')
parser.add_argument("--delta_y", type=float, default=0.0,
help='translation of camera m')
parser.add_argument("--delta_z", type=float, default=0.0,
help='translation of camera m')
# TDLF
parser.add_argument("--tdlf", action='store_false', help='without tdlf or not')
parser.add_argument("--alpha0", type=float, default=0.0, help='tdlf start value')
# optimizaion
parser.add_argument("--inerf", action='store_true', help='optimization on SE3 space, default is on tangent space')
return parser
rot_psi = lambda phi: np.array([
[1, 0, 0, 0],
[0, np.cos(phi), -np.sin(phi), 0],
[0, np.sin(phi), np.cos(phi), 0],
[0, 0, 0, 1]])
rot_theta = lambda th: np.array([
[np.cos(th), 0, -np.sin(th), 0],
[0, 1, 0, 0],
[np.sin(th), 0, np.cos(th), 0],
[0, 0, 0, 1]])
rot_phi = lambda psi: np.array([
[np.cos(psi), -np.sin(psi), 0, 0],
[np.sin(psi), np.cos(psi), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
R_psi = lambda phi: np.array([
[1, 0, 0],
[0, np.cos(phi), -np.sin(phi)],
[0, np.sin(phi), np.cos(phi)]])
R_theta = lambda th: np.array([
[np.cos(th), 0, -np.sin(th)],
[0, 1, 0],
[np.sin(th), 0, np.cos(th)]])
R_phi = lambda psi: np.array([
[np.cos(psi), -np.sin(psi), 0],
[np.sin(psi), np.cos(psi), 0],
[0, 0, 1]])
trans_t = lambda t: np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, t],
[0, 0, 0, 1]])
trans_x = lambda t: np.array([
[1, 0, 0, t],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
trans_y = lambda t: np.array([
[1, 0, 0, 0],
[0, 1, 0, t],
[0, 0, 1, 0],
[0, 0, 0, 1]])
trans_z = lambda t: np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, t],
[0, 0, 0, 1]])
def rgb2bgr(img_rgb):
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
return img_bgr
def show_img(title, img_rgb): # img - rgb image
img_bgr = rgb2bgr(img_rgb)
cv2.imshow(title, img_bgr)
cv2.waitKey(0)
cv2.destroyAllWindows()
def find_POI(img_rgb, DEBUG=False): # img - RGB image in range 0...255
img = np.copy(img_rgb)
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
nfeatures = 1024
sift = cv2.SIFT_create(nfeatures)
keypoints = sift.detect(img_gray, None)
if DEBUG:
for keypoint in keypoints:
cv2.circle(img, (int(keypoint.pt[0]),int(keypoint.pt[1])), 15, (0, 0, 255), -1)
# img = cv2.drawKeypoints(img_rgb, keypoints, img, (0, 255, 255), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imwrite("find_POI_num_{}.png".format(len(keypoints)), img)
# show_img("Detected points", img)
xy = [keypoint.pt for keypoint in keypoints]
xy = np.array(xy).astype(int)
# Remove duplicate points
xy_set = set(tuple(point) for point in xy)
xy = np.array([list(point) for point in xy_set]).astype(int)
return xy # pixel coordinates
def find_Uniform_POI(img_rgb, patch_nums, DEBUG=False):
POI = []
img = np.copy(img_rgb)
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
nfeatures = 8
sift = cv2.SIFT_create(nfeatures)
W = img_rgb.shape[1]
H = img_rgb.shape[0]
x_step = H // (patch_nums - 1)
y_step = W // (patch_nums - 1)
if DEBUG:
img_keypoints = np.empty((img_rgb.shape[0], img_rgb.shape[1], 3), dtype=np.uint8)
img_all = np.empty((img_rgb.shape[0], img_rgb.shape[1], 3), dtype=np.uint8)
for x_idx in range(patch_nums - 1):
if x_idx == patch_nums - 2:
x_end = H - 1
else:
x_end = (x_idx + 1) * x_step
for y_idx in range(patch_nums - 1):
if y_idx == patch_nums - 2:
y_end = W - 1
else:
y_end = (y_idx + 1) * y_step
sub_img = img_gray[x_idx*x_step:x_end, y_idx*y_step:y_end]
keypoints = sift.detect(sub_img, None)
for i in range(len(keypoints)):
keypoints[i].pt = (keypoints[i].pt[0] + y_idx*y_step, keypoints[i].pt[1] + x_idx*x_step)
if DEBUG:
for keypoint in keypoints:
cv2.circle(img_rgb, (int(keypoint.pt[0]),int(keypoint.pt[1])), 15, (0, 0, 255), -1)
# cv2.drawKeypoints(img_rgb, keypoints, img_keypoints, (0, 255, 255), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # 会覆盖掉img_keypoints上一次的结果,使用img_all保存
img_all[x_idx*x_step:x_end, y_idx*y_step:y_end, :] = img_rgb[x_idx*x_step:x_end, y_idx*y_step:y_end, :]
xy = [keypoint.pt for keypoint in keypoints]
xy = np.array(xy).astype(int)
# Remove duplicate points
xy_set = set(tuple(point) for point in xy)
sub_POI = np.array([list(point) for point in xy_set]).astype(int)
if(sub_POI.shape[0] != 0):
POI.append(sub_POI) # + np.array([y_idx*y_step, x_idx*x_step]))
POI = np.concatenate(POI)
if DEBUG:
cv2.imwrite("find_Uniform_POI_num_{}.png".format(POI.shape[0]), img_all)
return POI
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
def _minify(basedir, factors=[], resolutions=[]):
needtoload = False
for r in factors:
imgdir = os.path.join(basedir, 'images_{}'.format(r))
if not os.path.exists(imgdir):
needtoload = True
for r in resolutions:
imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0]))
if not os.path.exists(imgdir):
needtoload = True
if not needtoload:
return
from subprocess import check_output
imgdir = os.path.join(basedir, 'images')
imgs = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir))]
imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])]
imgdir_orig = imgdir
wd = os.getcwd()
for r in factors + resolutions:
if isinstance(r, int):
name = 'images_{}'.format(r)
resizearg = '{}%'.format(100. / r)
else:
name = 'images_{}x{}'.format(r[1], r[0])
resizearg = '{}x{}'.format(r[1], r[0])
imgdir = os.path.join(basedir, name)
if os.path.exists(imgdir):
continue
print('Minifying', r, basedir)
os.makedirs(imgdir)
check_output('cp {}/* {}'.format(imgdir_orig, imgdir), shell=True)
ext = imgs[0].split('.')[-1]
args = ' '.join(['mogrify', '-resize', resizearg, '-format', 'png', '*.{}'.format(ext)])
print(args)
os.chdir(imgdir)
check_output(args, shell=True)
os.chdir(wd)
if ext != 'png':
check_output('rm {}/*.{}'.format(imgdir, ext), shell=True)
print('Removed duplicates')
print('Done')
def _load_data(basedir, factor=None, width=None, height=None, load_imgs=True):
poses_arr = np.load(os.path.join(basedir, 'poses_bounds.npy'))
poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1, 2, 0])
bds = poses_arr[:, -2:].transpose([1, 0])
img0 = [os.path.join(basedir, 'images', f) for f in sorted(os.listdir(os.path.join(basedir, 'images'))) \
if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')][0]
sh = imageio.imread(img0).shape
sfx = ''
if factor is not None:
sfx = '_{}'.format(factor)
_minify(basedir, factors=[factor])
factor = factor
elif height is not None:
factor = sh[0] / float(height)
width = int(sh[1] / factor)
_minify(basedir, resolutions=[[height, width]])
sfx = '_{}x{}'.format(width, height)
elif width is not None:
factor = sh[1] / float(width)
height = int(sh[0] / factor)
_minify(basedir, resolutions=[[height, width]])
sfx = '_{}x{}'.format(width, height)
else:
factor = 1
imgdir = os.path.join(basedir, 'images' + sfx)
if not os.path.exists(imgdir):
print(imgdir, 'does not exist, returning')
return
imgfiles = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir)) if
f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')]
if poses.shape[-1] != len(imgfiles):
print('Mismatch between imgs {} and poses {} !!!!'.format(len(imgfiles), poses.shape[-1]))
return
sh = imageio.imread(imgfiles[0]).shape
poses[:2, 4, :] = np.array(sh[:2]).reshape([2, 1])
poses[2, 4, :] = poses[2, 4, :] * 1. / factor
if not load_imgs:
return poses, bds
def imread(f):
if f.endswith('png'):
return imageio.imread(f, ignoregamma=True)
else:
return imageio.imread(f)
imgs = imgs = [imread(f)[..., :3] / 255. for f in imgfiles]
imgs = np.stack(imgs, -1)
print('Loaded image data', imgs.shape, poses[:, -1, 0])
return poses, bds, imgs
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec1_avg = up
vec0 = normalize(np.cross(vec1_avg, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def ptstocam(pts, c2w):
tt = np.matmul(c2w[:3, :3].T, (pts - c2w[:3, 3])[..., np.newaxis])[..., 0]
return tt
def poses_avg(poses):
hwf = poses[0, :3, -1:]
center = poses[:, :3, 3].mean(0)
vec2 = normalize(poses[:, :3, 2].sum(0))
up = poses[:, :3, 1].sum(0)
c2w = np.concatenate([viewmatrix(vec2, up, center), hwf], 1)
return c2w
def recenter_poses(poses):
poses_ = poses + 0
bottom = np.reshape([0, 0, 0, 1.], [1, 4])
c2w = poses_avg(poses)
c2w = np.concatenate([c2w[:3, :4], bottom], -2)
bottom = np.tile(np.reshape(bottom, [1, 1, 4]), [poses.shape[0], 1, 1])
poses = np.concatenate([poses[:, :3, :4], bottom], -2)
poses = np.linalg.inv(c2w) @ poses
poses_[:, :3, :4] = poses[:, :3, :4]
poses = poses_
return poses
#####################
def spherify_poses(poses, bds):
p34_to_44 = lambda p: np.concatenate([p, np.tile(np.reshape(np.eye(4)[-1, :], [1, 1, 4]), [p.shape[0], 1, 1])], 1)
rays_d = poses[:, :3, 2:3]
rays_o = poses[:, :3, 3:4]
def min_line_dist(rays_o, rays_d):
A_i = np.eye(3) - rays_d * np.transpose(rays_d, [0, 2, 1])
b_i = -A_i @ rays_o
pt_mindist = np.squeeze(-np.linalg.inv((np.transpose(A_i, [0, 2, 1]) @ A_i).mean(0)) @ (b_i).mean(0))
return pt_mindist
pt_mindist = min_line_dist(rays_o, rays_d)
center = pt_mindist
up = (poses[:, :3, 3] - center).mean(0)
vec0 = normalize(up)
vec1 = normalize(np.cross([.1, .2, .3], vec0))
vec2 = normalize(np.cross(vec0, vec1))
pos = center
c2w = np.stack([vec1, vec2, vec0, pos], 1)
poses_reset = np.linalg.inv(p34_to_44(c2w[None])) @ p34_to_44(poses[:, :3, :4])
rad = np.sqrt(np.mean(np.sum(np.square(poses_reset[:, :3, 3]), -1)))
sc = 1. / rad
poses_reset[:, :3, 3] *= sc
bds *= sc
rad *= sc
centroid = np.mean(poses_reset[:, :3, 3], 0)
zh = centroid[2]
poses_reset = np.concatenate(
[poses_reset[:, :3, :4], np.broadcast_to(poses[0, :3, -1:], poses_reset[:, :3, -1:].shape)], -1)
return poses_reset, bds
def get_tensorboard_writer(path):
exp_dir = Path(path)
exp_dir.mkdir(parents=True, exist_ok=True)
existing_versions = [int(x.name) for x in exp_dir.iterdir()]
version = 0 if len(existing_versions) == 0 else max(existing_versions) + 1
experiment_path = exp_dir / str(version)
writer = SummaryWriter(log_dir = experiment_path)
return writer
def read_pose_file(file_path, MAP_SCALE):
# real world scale
dfnet_poses = []
with open(file_path, "r") as f:
for line in f.readlines():
pose_init = line.strip().split(" ")
pose_init = np.array([float(pose) for pose in pose_init]).reshape(3,4)
pose_init[:3, 3] = pose_init[:3, 3] / MAP_SCALE
R_vec = cv2.Rodrigues(pose_init[:3,:3])[0]
pose_init[:3,:3] = cv2.Rodrigues(R_vec)[0]
start_pose = np.eye(4)
start_pose[:3, :] = pose_init
dfnet_poses.append(start_pose) # 地图尺度
return dfnet_poses