-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseConv.py
80 lines (53 loc) · 1.94 KB
/
SparseConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch.nn as nn
import torch
class SparseConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size):
super().__init__()
padding = kernel_size//2
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=padding,
bias=False)
self.bias = nn.Parameter(
torch.zeros(out_channels),
requires_grad=True)
self.sparsity = nn.Conv2d(
1,
1,
kernel_size=kernel_size,
padding=padding,
bias=False)
kernel = torch.FloatTensor(torch.ones([kernel_size, kernel_size])).unsqueeze(0).unsqueeze(0)
self.sparsity.weight = nn.Parameter(
data=kernel,
requires_grad=False)
self.relu = nn.ReLU(inplace=True)
self.max_pool = nn.MaxPool2d(
kernel_size,
stride=1,
padding=padding)
def forward(self, x, mask):
x = self.conv(x)
mask_sum = torch.sum(mask,dim=1,keepdim=True)
normalizer = 1/(self.sparsity(mask_sum)+1e-8)
x = x * normalizer + self.bias.unsqueeze(0).unsqueeze(2).unsqueeze(3)
x = self.relu(x)
mask = self.max_pool(mask)
return x, mask
class SparseConvNet(nn.Module):
def __init__(self, input_channels):
super().__init__()
self.SparseLayer1 = SparseConv(input_channels, 256, 9)
self.SparseLayer2 = SparseConv(256, 256, 7)
self.SparseLayer6 = SparseConv(256, input_channels, 1)
def forward(self, x, mask):
x = x * mask
x, mask = self.SparseLayer1(x, mask)
x, mask = self.SparseLayer2(x, mask)
x, mask = self.SparseLayer6(x, mask)
return x