Skip to content

Latest commit

 

History

History
101 lines (91 loc) · 3.64 KB

data.md

File metadata and controls

101 lines (91 loc) · 3.64 KB

Data

Please refer to the README in foler data_preparation/ for details about how we preprocess data.

Preprocessed Data

Name Size Details Required for training?
mp3d_planercnn_json.zip 160 MB Jsons that contain the dataset information. Yes
rgb.zip 21 GB Habitat generated images. Yes
observations.zip 64 GB Depth and semantic labels. Yes
id2semantic.zip 728 KB Instance id to semantic name. No
planes_ply_mp3dcoord_refined.zip 28 GB Plane annotations. No
cameras.zip 4.4 MB Camera poses. No
If the above Dropbox link does not work, alternatively, you can download from Google Drive.

Dataset Json Files

We write a custom dataloader in Detectron2 and it loads jsons that contain the dataset information. mp3d_planercnn_json.zip contains jsons for train/val/test split. Each json file stores images pairs and their annotations.

# json file data structure
"info": "...",
"categories":  [{'id': 0, 'name': 'plane'}],
"data": [
    "0": {                                      # image A
        "file_name": /path/to/image_id.png,
        "image_id": image_id,
        "height": 480,
        "width": 640,
        "camera": {                             # camera pose in the asset
            "position": [x,y,z],                
            "rotation": [w, xi, yi, zi],        # quaternion
        }
        "annotations": [                        # list of planes, with detectron2 annotations format.
            {                                   
                "id":                           
                "image_id":
                "category_id":
                "iscrowd":
                "area": 
                "bbox":
                "bbox_mode":
                "width":
                "height":
                "segmentation":
                "plane":                        # plane parameters
            },
        ]
    },
    "1": {...},                                 # image B
    "gt_corrs": [...],                          # List of pairs of corresponding plane indices
    'rel_pose': {                               # A's pose in B's coordinate frame.
        'position':
        'rotation':
    },
    ...
]