Please refer to the README in foler data_preparation/
for details about how we preprocess data.
Name | Size | Details | Required for training? |
---|---|---|---|
mp3d_planercnn_json.zip | 160 MB | Jsons that contain the dataset information. | Yes |
rgb.zip | 21 GB | Habitat generated images. | Yes |
observations.zip | 64 GB | Depth and semantic labels. | Yes |
id2semantic.zip | 728 KB | Instance id to semantic name. | No |
planes_ply_mp3dcoord_refined.zip | 28 GB | Plane annotations. | No |
cameras.zip | 4.4 MB | Camera poses. | No |
We write a custom dataloader in Detectron2 and it loads jsons that contain the dataset information.
mp3d_planercnn_json.zip contains jsons for train/val/test
split. Each json file stores images pairs and their annotations.
# json file data structure
"info": "...",
"categories": [{'id': 0, 'name': 'plane'}],
"data": [
"0": { # image A
"file_name": /path/to/image_id.png,
"image_id": image_id,
"height": 480,
"width": 640,
"camera": { # camera pose in the asset
"position": [x,y,z],
"rotation": [w, xi, yi, zi], # quaternion
}
"annotations": [ # list of planes, with detectron2 annotations format.
{
"id":
"image_id":
"category_id":
"iscrowd":
"area":
"bbox":
"bbox_mode":
"width":
"height":
"segmentation":
"plane": # plane parameters
},
]
},
"1": {...}, # image B
"gt_corrs": [...], # List of pairs of corresponding plane indices
'rel_pose': { # A's pose in B's coordinate frame.
'position':
'rotation':
},
...
]