forked from aws-neuron/aws-neuron-driver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuron_cdev.c
1107 lines (971 loc) · 30 KB
/
neuron_cdev.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2020, Amazon.com, Inc. or its affiliates. All Rights Reserved
*/
/** Exposes device node interface(/dev/neuron0) for each device.
* see neuron_ioctl.h for all the operations that can be done this node.
*/
#define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/cdev.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/pci.h>
#include "neuron_ioctl.h"
#include "neuron_device.h"
#include "neuron_core.h"
#include "neuron_dma.h"
#include "neuron_mempool.h"
#include "neuron_trace.h"
#include "v1/address_map.h"
#include "v1/fw_io.h"
static dev_t neuron_dev;
static int major;
static struct class *neuron_dev_class;
/* one device node per device */
#define NEURON_MAX_DEV_NODES MAX_NEURON_DEVICE_COUNT
struct ncdev {
int minor;
int open_count; // number of times this node is opened.
struct cdev *cdev;
struct neuron_device *ndev; // neuron device associated with this device node.
};
/* char device nodes created for each device. */
static struct ncdev devnodes[NEURON_MAX_DEV_NODES];
static u64 ncdev_mem_chunk_to_mem_handle(struct mem_chunk *mc)
{
return (u64)mc;
}
static struct mem_chunk *ncdev_mem_handle_to_mem_chunk(u64 mh)
{
return (struct mem_chunk *)mh;
}
static int ncdev_dma_engine_init(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_dma_eng_init arg;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_eng_init *)param, sizeof(arg));
if (ret)
return ret;
return ndmar_eng_init(nd, arg.eng_id);
}
static int ncdev_dma_engine_set_state(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_dma_eng_set_state arg;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_eng_set_state *)param, sizeof(arg));
if (ret)
return ret;
return ndmar_eng_set_state(nd, arg.eng_id, arg.state);
}
static int ncdev_dma_engine_get_state(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_dma_eng_get_state arg;
struct neuron_dma_eng_state state;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_eng_get_state *)param, sizeof(arg));
if (ret)
return ret;
ret = ndmar_eng_get_state(nd, arg.eng_id, &state);
if (ret)
return ret;
return copy_to_user(arg.state, &state, sizeof(state));
}
static int ncdev_dma_queue_init(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_dma_queue_init arg;
struct mem_chunk *rx_mc;
struct mem_chunk *tx_mc;
struct mem_chunk *rxc_mc;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_queue_init *)param, sizeof(arg));
if (ret)
return -EACCES;
rx_mc = ncdev_mem_handle_to_mem_chunk(arg.rx_handle);
tx_mc = ncdev_mem_handle_to_mem_chunk(arg.tx_handle);
if (arg.rxc_handle)
rxc_mc = ncdev_mem_handle_to_mem_chunk(arg.rxc_handle);
else
rxc_mc = NULL;
ret = ndmar_queue_init(nd, arg.eng_id, arg.qid, arg.tx_desc_count, arg.rx_desc_count, tx_mc,
rx_mc, rxc_mc, arg.axi_port);
return ret;
}
static int ncdev_dma_copy_descriptors(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_dma_copy_descriptors arg;
struct mem_chunk *src_mc;
u32 offset = 0, copy_size = 0;
int remaining, ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_copy_descriptors *)param, sizeof(arg));
if (ret)
return ret;
struct mem_chunk *mc = ncdev_mem_handle_to_mem_chunk(arg.mem_handle);
if (!mc)
return -EINVAL;
// check access is within the range.
if (arg.offset + (arg.num_descs * sizeof(union udma_desc)) > mc->size) {
ret = -EINVAL;
goto out;
}
remaining = arg.num_descs * sizeof(union udma_desc);
ret = mc_alloc(&nd->mpset, &src_mc, MAX_DMA_DESC_SIZE, MEM_LOC_HOST, 0, 0, mc->nc_id);
if (ret) {
ret = -ENOMEM;
goto out;
}
while (remaining) {
copy_size = remaining < MAX_DMA_DESC_SIZE ? remaining : MAX_DMA_DESC_SIZE;
ret = copy_from_user(src_mc->va, arg.buffer + offset, copy_size);
if (ret) {
break;
}
ret = ndma_memcpy_dma_copy_descriptors(nd, src_mc->va, 0, mc, arg.offset + offset,
copy_size, arg.queue_type);
if (ret) {
break;
}
remaining -= copy_size;
offset += copy_size;
}
out:
mc_free(&src_mc);
return ret;
}
static int ncdev_dma_copy_start(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_dma_queue_copy_start arg;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_queue_copy_start *)param, sizeof(arg));
if (ret)
return ret;
ret = ndmar_queue_copy_start(nd, arg.eng_id, arg.qid, arg.tx_desc_count, arg.rx_desc_count);
return ret;
}
static int ncdev_dma_ack_completed(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_dma_ack_completed arg;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_ack_completed *)param, sizeof(arg));
if (ret)
return ret;
return ndmar_ack_completed(nd, arg.eng_id, arg.qid, arg.count);
}
static int ncdev_dma_queue_get_state(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_dma_queue_get_state arg;
struct neuron_dma_queue_state tx, rx;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_queue_get_state *)param, sizeof(arg));
if (ret)
return ret;
ret = ndmar_queue_get_state(nd, arg.eng_id, arg.qid, &tx, &rx);
if (ret)
return ret;
ret = copy_to_user(arg.tx, &tx, sizeof(tx));
if (ret)
return ret;
return copy_to_user(arg.rx, &rx, sizeof(rx));
}
static int ncdev_dma_queue_release(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_dma_queue_release arg;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_queue_release *)param, sizeof(arg));
if (ret)
return ret;
return ndmar_queue_release(nd, arg.eng_id, arg.qid);
}
static int ncdev_dma_descriptor_copyout(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_dma_descriptor_copyout arg;
struct mem_chunk *tx = NULL, *rx = NULL, *mc = NULL;
u32 tx_size = 0, rx_size = 0;
void *addr = NULL;
u32 desc_size = sizeof(union udma_desc), total_size, offset;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_dma_descriptor_copyout *)param,
sizeof(arg));
if (ret)
return ret;
if (arg.count == 0)
return -EINVAL;
total_size = arg.count * desc_size;
offset = arg.start_index * desc_size;
ret = ndmar_queue_get_descriptor_mc(nd, arg.eng_id, arg.qid, &tx, &rx, &tx_size, &rx_size);
if (ret) {
pr_err("get DMA queue desc failed %d\n", ret);
return -EINVAL;
}
if (arg.type == NEURON_DMA_QUEUE_TYPE_TX) {
if (arg.count > tx_size) {
pr_err("tx size is less than count %d tx %d\n", arg.count, tx_size);
return -EFBIG;
}
mc = tx;
} else if (arg.type == NEURON_DMA_QUEUE_TYPE_RX) {
if (arg.count > rx_size) {
pr_err("rx size is less than count %d rx %d\n", arg.count, rx_size);
return -EFBIG;
}
mc = rx;
}
if (mc == NULL)
return -EINVAL;
if (mc->mem_location == MEM_LOC_DEVICE) {
addr = kmalloc(total_size, GFP_KERNEL);
if (addr == NULL) {
return -ENOMEM;
}
ret = ndma_memcpy_buf_from_mc(nd, addr, 0, mc, offset, total_size);
if (ret) {
kfree(addr);
return ret;
}
} else {
addr = mc->va + offset;
}
ret = copy_to_user(arg.buffer, addr, total_size);
if (mc->mem_location == MEM_LOC_DEVICE)
kfree(addr);
return ret;
}
static int ncdev_mem_alloc(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_mem_alloc mem_alloc_arg;
enum mem_location location;
u64 mh;
struct mem_chunk *mc;
int ret;
ret = copy_from_user(&mem_alloc_arg, (struct neuron_ioctl_mem_alloc *)param,
sizeof(mem_alloc_arg));
if (ret)
return -EACCES;
if (mem_alloc_arg.host_memory)
location = MEM_LOC_HOST;
else
location = MEM_LOC_DEVICE;
ret = mc_alloc(&nd->mpset, &mc, mem_alloc_arg.size, location, mem_alloc_arg.dram_channel,
mem_alloc_arg.dram_region, mem_alloc_arg.nc_id);
if (ret)
return ret;
trace_ioctl_mem_alloc(nd, mc);
mh = ncdev_mem_chunk_to_mem_handle(mc);
ret = copy_to_user(mem_alloc_arg.mem_handle, &mh, sizeof(mc));
if (ret) {
mc_free(&mc);
return ret;
}
return 0;
}
static int ncdev_mem_get_pa(void *param)
{
struct neuron_ioctl_mem_get_pa mem_get_pa_arg;
struct mem_chunk *mc;
u64 pa;
int ret;
ret = copy_from_user(&mem_get_pa_arg, (struct neuron_ioctl_mem_get_pa *)param,
sizeof(mem_get_pa_arg));
if (ret)
return ret;
mc = ncdev_mem_handle_to_mem_chunk(mem_get_pa_arg.mem_handle);
if (mc->mem_location == MEM_LOC_HOST)
pa = mc->pa | PCIEX8_0_BASE;
else
pa = mc->pa;
return copy_to_user(mem_get_pa_arg.pa, &pa, sizeof(u64));
}
static int ncdev_mem_free(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_mem_free mem_free_arg;
struct mem_chunk *mc;
int ret;
ret = copy_from_user(&mem_free_arg, (struct neuron_ioctl_mem_free *)param,
sizeof(mem_free_arg));
if (ret)
return ret;
mc = ncdev_mem_handle_to_mem_chunk(mem_free_arg.mem_handle);
trace_ioctl_mem_alloc(nd, mc);
mc_free(&mc);
return 0;
}
static int ncdev_mem_copy(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_mem_copy arg;
struct mem_chunk *src_mc;
struct mem_chunk *dst_mc;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_mem_copy *)param, sizeof(arg));
if (ret)
return ret;
src_mc = ncdev_mem_handle_to_mem_chunk(arg.src_mem_handle);
dst_mc = ncdev_mem_handle_to_mem_chunk(arg.dst_mem_handle);
// check access is within the range.
if (arg.src_offset + arg.size > src_mc->size) {
pr_err("src offset+size is too large for mem handle\n");
return -EINVAL;
}
// check access is within the range.
if (arg.dst_offset + arg.size > dst_mc->size) {
pr_err("src offset+size is too large for mem handle\n");
return -EINVAL;
}
ret = ndma_memcpy_mc(nd, src_mc, dst_mc, arg.src_offset, arg.dst_offset, arg.size);
if (ret) {
pr_err("dma memcpy failed\n");
return ret;
}
trace_ioctl_mem_copy(nd, src_mc, dst_mc);
return 0;
}
int ncdev_mem_buf_copy(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_mem_buf_copy arg;
struct mem_chunk *mc;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_mem_buf_copy *)param, sizeof(arg));
if (ret)
return ret;
mc = ncdev_mem_handle_to_mem_chunk(arg.mem_handle);
// check access is within the range.
if (arg.offset + arg.size > mc->size) {
pr_err("offset+size is too large for mem handle\n");
return -EINVAL;
}
if (arg.copy_to_mem_handle)
trace_ioctl_mem_copyin(nd, mc, arg.buffer, arg.offset, arg.size);
else
trace_ioctl_mem_copyout(nd, mc, arg.buffer, arg.offset, arg.size);
if (mc->mem_location == MEM_LOC_HOST) {
if (arg.copy_to_mem_handle) {
ret = copy_from_user(mc->va + arg.offset, arg.buffer, arg.size);
} else {
ret = copy_to_user(arg.buffer, mc->va + arg.offset, arg.size);
}
return ret;
} else {
// TODO - this has to be converted to mmap
struct mem_chunk *src_mc;
u32 offset = 0;
int remaining = arg.size;
u32 copy_size = 0;
ret = mc_alloc(&nd->mpset, &src_mc, MAX_DMA_DESC_SIZE, MEM_LOC_HOST, 0, 0,
mc->nc_id);
if (ret) {
ret = -ENOMEM;
return ret;
}
while (remaining) {
copy_size = remaining < MAX_DMA_DESC_SIZE ? remaining : MAX_DMA_DESC_SIZE;
if (arg.copy_to_mem_handle) {
ret = copy_from_user(src_mc->va, arg.buffer + offset, copy_size);
if (ret) {
break;
}
ret = ndma_memcpy_buf_to_mc(nd, src_mc->va, 0, mc,
arg.offset + offset, copy_size);
if (ret) {
break;
}
} else {
ret = ndma_memcpy_buf_from_mc(nd, src_mc->va, 0, mc,
arg.offset + offset, copy_size);
if (ret) {
break;
}
ret = copy_to_user(arg.buffer + offset, src_mc->va, copy_size);
if (ret) {
break;
}
}
remaining -= copy_size;
offset += copy_size;
}
mc_free(&src_mc);
return ret;
}
}
static long ncdev_semaphore_ioctl(struct neuron_device *nd, unsigned int cmd, void *param)
{
int ret;
struct neuron_ioctl_semaphore arg;
ret = copy_from_user(&arg, (struct neuron_ioctl_semaphore *)param, sizeof(arg));
if (ret)
return ret;
if (cmd == NEURON_IOCTL_SEMAPHORE_READ) {
ret = nc_semaphore_read(nd, arg.nc_id, arg.semaphore_index, &arg.value);
if (ret)
return ret;
return copy_to_user((struct neuron_ioctl_semaphore *)param, &arg, sizeof(arg));
} else if (cmd == NEURON_IOCTL_SEMAPHORE_WRITE) {
return nc_semaphore_write(nd, arg.nc_id, arg.semaphore_index, arg.value);
} else if (cmd == NEURON_IOCTL_SEMAPHORE_INCREMENT) {
return nc_semaphore_increment(nd, arg.nc_id, arg.semaphore_index, arg.value);
} else if (cmd == NEURON_IOCTL_SEMAPHORE_DECREMENT) {
return nc_semaphore_decrement(nd, arg.nc_id, arg.semaphore_index, arg.value);
}
return -1;
}
static long ncdev_events_ioctl(struct neuron_device *nd, unsigned int cmd, void *param)
{
int ret;
struct neuron_ioctl_event arg;
ret = copy_from_user(&arg, (struct neuron_ioctl_event *)param,
sizeof(struct neuron_ioctl_event));
if (ret)
return ret;
if (cmd == NEURON_IOCTL_EVENT_GET) {
ret = nc_event_get(nd, arg.nc_id, arg.event_index, &arg.value);
if (ret) {
return ret;
}
return copy_to_user((struct neuron_ioctl_event *)param, &arg, sizeof(arg));
} else if (cmd == NEURON_IOCTL_EVENT_SET) {
return nc_event_set(nd, arg.nc_id, arg.event_index, arg.value);
}
return -1;
}
static long ncdev_bar_read(struct neuron_device *nd, u8 bar, u64 *reg_addresses, void *user_va,
u32 data_count)
{
int ret;
u64 data_size = data_count * sizeof(u32);
if (bar == 0) {
u32 *data = NULL;
data = kmalloc(data_size, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
ret = fw_io_read_csr_array((void **)reg_addresses, data, data_count);
if (ret) {
kfree(data);
return ret;
}
ret = copy_to_user(user_va, data, data_size);
kfree(data);
} else {
struct mem_chunk *mc;
u32 nc_id = 0;
dma_addr_t src_addr = reg_addresses[0];
ret = mc_alloc(&nd->mpset, &mc, data_size, MEM_LOC_HOST, 0, 0, nc_id);
if (ret)
return -ENOMEM;
ret = ndma_memcpy(nd, mc->nc_id, src_addr, mc->pa | PCIEX8_0_BASE, data_size);
if (ret) {
mc_free(&mc);
return ret;
}
ret = copy_to_user(user_va, mc->va, data_size);
mc_free(&mc);
}
return ret;
}
static long ncdev_bar_write(struct neuron_device *nd, u8 bar, u64 *reg_addresses, void *user_va,
u32 data_count)
{
int ret = 0;
u32 *data = NULL;
u64 data_size = data_count * sizeof(u32);
data = kmalloc(data_size, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
ret = copy_from_user(data, user_va, data_size);
if (ret)
goto done;
/*
* For BAR0 the addresses are passed as array(random access).
* For BAR2 a single address is provided and driver does sequential writes.
*/
if (bar == 0) {
int i;
for (i = 0; i < data_count; i++) {
u64 off = reg_addresses[i] - (u64)nd->npdev.bar0;
if (off > nd->npdev.bar0_size) {
ret = -EINVAL;
goto done;
}
writel(data[i], nd->npdev.bar0 + off);
}
} else {
int i;
u64 off = reg_addresses[0] - (u64)nd->npdev.bar2;
for (i = 0; i < data_count; i++, off += sizeof(u32)) {
if (off > nd->npdev.bar2_size) {
ret = -EINVAL;
goto done;
}
writel(data[i], nd->npdev.bar2 + off);
}
}
done:
kfree(data);
return ret;
}
static long ncdev_bar_rw(struct neuron_device *nd, void *param, bool read)
{
int ret;
struct neuron_ioctl_bar_rw arg;
u64 *reg_addresses = NULL;
u64 address_count;
ret = copy_from_user(&arg, (struct neuron_ioctl_bar *)param, sizeof(arg));
if (ret)
return ret;
/* BAR2 reads are always sequential and so addresses are autogenerated from base*/
if (arg.bar == 0)
address_count = arg.count;
else
address_count = 1;
reg_addresses = kmalloc(address_count * sizeof(u64), GFP_KERNEL);
if (reg_addresses == NULL)
return -ENOMEM;
ret = copy_from_user(reg_addresses, arg.address, address_count * sizeof(u64));
if (ret != 0)
goto done;
if (read)
ret = ncdev_bar_read(nd, arg.bar, reg_addresses, arg.data, arg.count);
else
ret = ncdev_bar_write(nd, arg.bar, reg_addresses, arg.data, arg.count);
done:
kfree(reg_addresses);
return ret;
}
static long ncdev_post_metric(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_post_metric arg;
u32 *data = NULL;
ret = copy_from_user(&arg, (struct neuron_ioctl_post_metric *)param, sizeof(arg));
if (ret) {
return ret;
}
data = kmalloc(arg.data_size, GFP_KERNEL);
if (data == NULL) {
ret = -ENOMEM;
goto done;
}
ret = copy_from_user(data, arg.data, arg.data_size);
if (ret)
goto done;
ret = fw_io_post_metric(nd->fw_io_ctx, (u8 *)data, arg.data_size);
done:
kfree(data);
return ret;
}
static long ncdev_read_hw_counters(struct neuron_device *nd, void *param)
{
int ret;
struct neuron_ioctl_read_hw_counters arg;
uint64_t *reg_addresses = NULL;
uint32_t *data = NULL;
ret = copy_from_user(&arg, (struct neuron_ioctl_read_hw_counters *)param, sizeof(arg));
if (ret)
return ret;
reg_addresses = kmalloc(arg.count * sizeof(uint64_t), GFP_KERNEL);
if (reg_addresses == NULL)
return -ENOMEM;
ret = copy_from_user(reg_addresses, arg.address, arg.count * sizeof(uint64_t));
if (ret != 0)
goto done;
data = kmalloc(arg.count * sizeof(uint32_t), GFP_KERNEL);
if (data == NULL)
goto done;
ret = fw_io_read_counters(nd->fw_io_ctx, reg_addresses, data, arg.count);
if (ret)
goto done;
ret = copy_to_user(arg.data, data, arg.count * sizeof(uint32_t));
done:
kfree(reg_addresses);
kfree(data);
return ret;
}
static long ncdev_device_reset(struct neuron_device *nd)
{
fw_io_initiate_reset(nd->npdev.bar0);
return 0;
}
static long ncdev_device_reset_status(struct neuron_device *nd, void *param)
{
bool ret;
u8 result = 0;
ret = fw_io_is_reset_initiated(nd->npdev.bar0);
if (ret) {
result = 1;
}
return copy_to_user(param, &result, 1);
}
static long ncdev_device_ready(struct neuron_device *nd, void *param)
{
u8 result;
result = fw_io_is_device_ready(nd->npdev.bar0);
return copy_to_user(param, &result, 1);
}
/* only one process can do discovery at a time */
static DEFINE_MUTEX(ncdev_discovery_lock);
static long ncdev_device_info(struct neuron_device *nd, void *param)
{
int i, ret;
struct neuron_ioctl_device_info result;
result.architecture = nd->architecture;
result.revision = nd->revision;
mutex_lock(&ncdev_discovery_lock);
/**
* UMD runtime directly access PCI config space to enable/disable device.
* When UMD runtime process is stopped it would remove master and memory enable bits from device.
* If system had driver and UMD runtime is installed then when installing KMD runtime,
* the UMD runtime is stopped(which will make Mem- and BusMaster- on device as cleanup) and
* KMD runtime process is started. The KMD runtime then would fail to access the device
* because of "Mem-".
*
* To avoid this always directly write to config space until old runtime goes away.
* We cant use pci_enable_device() since the device is already enabled during driver start.
*/
pci_write_config_word(nd->pdev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
// if topology discovery is not yet done, do it and cache the result
if (nd->connected_device_count <= 0) {
ret = fw_io_topology(nd->fw_io_ctx, nd->connected_devices,
&nd->connected_device_count);
if (ret) {
ret = -EFAULT;
goto out;
}
}
for (i = 0; i < nd->connected_device_count; i++) {
result.connected_devices[i] = nd->connected_devices[i];
}
result.bar_address[0] = (u64)nd->npdev.bar0;
result.bar_size[0] = nd->npdev.bar0_size;
result.bar_address[1] = (u64)nd->npdev.bar2;
result.bar_size[1] = nd->npdev.bar2_size;
result.connected_device_count = nd->connected_device_count;
ret = copy_to_user(param, &result, sizeof(result));
out:
mutex_unlock(&ncdev_discovery_lock);
return ret;
}
/* Only one process can take ownership of a device. */
static DEFINE_MUTEX(ncdev_device_lock);
static long ncdev_device_init(struct neuron_device *nd, void *param)
{
int ret = 0;
struct neuron_ioctl_device_init arg;
u64 device_dram_addr[V1_MAX_DRAM_CHANNELS] = { P_0_DRAM_0_BASE, P_0_DRAM_1_BASE };
u64 device_dram_size[V1_MAX_DRAM_CHANNELS] = { P_0_DRAM_0_SIZE, P_0_DRAM_1_SIZE };
mutex_lock(&ncdev_device_lock);
ret = copy_from_user(&arg, (struct neuron_ioctl_device_init *)param, sizeof(arg));
if (ret) {
return ret;
}
if (nd->current_pid == 0) {
ret = mpset_device_init(&nd->mpset, V1_MAX_DRAM_CHANNELS, arg.mem_regions,
device_dram_addr, device_dram_size);
if (ret)
goto done;
nd->current_pid = task_tgid_nr(current);
nd->current_pid_open_count = 1; //since the ioctl done after open set to 1
ret = ndmar_init(nd);
} else if (nd->current_pid != task_tgid_nr(current)) {
pr_err("device inuse by pid:%d\n", nd->current_pid);
ret = -EBUSY;
}
done:
mutex_unlock(&ncdev_device_lock);
return ret;
}
static long ncdev_device_release(struct ncdev *dev, struct neuron_device *nd)
{
int ret = 0;
mutex_lock(&ncdev_device_lock);
if ((nd->current_pid_open_count == 0) && ((nd->current_pid == task_tgid_nr(current)) || nd->current_pid == task_ppid_nr(current))) {
nd->current_pid = 0;
}
if (dev->open_count == 0) {
nc_nq_destroy_all(nd);
ndmar_close(nd);
mpset_free_all(&nd->mpset);
nd->mpset.num_regions = 0;
}
mutex_unlock(&ncdev_device_lock);
return ret;
}
static long ncdev_device_app_pid(struct neuron_device *nd, void *param)
{
return copy_to_user(param, &nd->current_pid, sizeof(int));
}
static long ncdev_nc_nq_init(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_notifications_init arg;
int ret;
ret = copy_from_user(&arg, (struct neuron_ioctl_notifications_init *)param, sizeof(arg));
if (ret) {
return ret;
}
ret = nc_nq_init(nd, arg.nc_id, arg.engine_index, arg.nq_type, arg.size);
if (ret) {
return ret;
}
ret = nc_get_nq_mmap_offset(arg.nc_id, arg.engine_index, arg.nq_type, &arg.mmap_offset);
if (ret) {
return ret;
}
return copy_to_user(&((struct neuron_ioctl_notifications_init *)param)->mmap_offset,
&arg.mmap_offset, sizeof(arg.mmap_offset));
}
static long ncdev_nc_nq_destroy(struct neuron_device *nd, void *param)
{
struct neuron_ioctl_notifications_destroy arg;
int ret, nc_id, nq_type, eng_index;
ret = copy_from_user(&arg, param, sizeof(arg));
if (ret) {
return ret;
}
ret = nc_get_nq_from_mmap_offset(arg.mmap_offset, &nc_id, &eng_index, &nq_type);
if (ret) {
return ret;
}
return nc_nq_destroy(nd, nc_id, eng_index, nq_type);
}
long ncdev_ioctl(struct file *filep, unsigned int cmd, unsigned long param)
{
struct ncdev *ncd;
struct neuron_device *nd;
ncd = filep->private_data;
if (ncd == NULL) {
return -EINVAL;
}
nd = ncd->ndev;
if (nd == NULL) {
return -EINVAL;
}
// the following IOCTL allowed only for the process which did DEVICE_INIT
if (cmd == NEURON_IOCTL_DEVICE_RESET || cmd == NEURON_IOCTL_DEVICE_RESET_STATUS ||
cmd == NEURON_IOCTL_DMA_ENG_INIT || cmd == NEURON_IOCTL_DMA_ENG_SET_STATE ||
cmd == NEURON_IOCTL_DMA_QUEUE_INIT || cmd == NEURON_IOCTL_DMA_ACK_COMPLETED ||
cmd == NEURON_IOCTL_DMA_QUEUE_RELEASE || cmd == NEURON_IOCTL_DMA_COPY_DESCRIPTORS ||
cmd == NEURON_IOCTL_MEM_ALLOC || cmd == NEURON_IOCTL_MEM_FREE ||
cmd == NEURON_IOCTL_MEM_COPY || cmd == NEURON_IOCTL_MEM_GET_PA ||
cmd == NEURON_IOCTL_BAR_WRITE || cmd == NEURON_IOCTL_POST_METRIC ||
cmd == NEURON_IOCTL_NOTIFICATIONS_INIT || cmd == NEURON_IOCTL_NOTIFICATIONS_DESTROY) {
if (nd->current_pid != task_tgid_nr(current)) {
return -EACCES;
}
}
if (cmd == NEURON_IOCTL_DEVICE_RESET) {
return ncdev_device_reset(nd);
} else if (cmd == NEURON_IOCTL_DEVICE_RESET_STATUS) {
return ncdev_device_reset_status(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DEVICE_READY) {
return ncdev_device_ready(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DEVICE_INFO) {
return ncdev_device_info(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DEVICE_INIT) {
return ncdev_device_init(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DEVICE_RELEASE) {
return ncdev_device_release(ncd, nd);
} else if (cmd == NEURON_IOCTL_DEVICE_APP_PID) {
return ncdev_device_app_pid(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_ENG_INIT) {
return ncdev_dma_engine_init(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_ENG_SET_STATE) {
return ncdev_dma_engine_set_state(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_QUEUE_INIT) {
return ncdev_dma_queue_init(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_QUEUE_COPY_START) {
return ncdev_dma_copy_start(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_ACK_COMPLETED) {
return ncdev_dma_ack_completed(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_QUEUE_RELEASE) {
return ncdev_dma_queue_release(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_COPY_DESCRIPTORS) {
return ncdev_dma_copy_descriptors(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_ENG_GET_STATE) {
return ncdev_dma_engine_get_state(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_QUEUE_GET_STATE) {
return ncdev_dma_queue_get_state(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_DMA_DESCRIPTOR_COPYOUT) {
return ncdev_dma_descriptor_copyout(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_MEM_ALLOC) {
return ncdev_mem_alloc(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_MEM_GET_PA) {
return ncdev_mem_get_pa((void *)param);
} else if (cmd == NEURON_IOCTL_MEM_FREE) {
return ncdev_mem_free(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_MEM_COPY) {
return ncdev_mem_copy(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_MEM_BUF_COPY) {
return ncdev_mem_buf_copy(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_SEMAPHORE_READ) {
return ncdev_semaphore_ioctl(nd, cmd, (void *)param);
} else if (cmd == NEURON_IOCTL_SEMAPHORE_WRITE) {
return ncdev_semaphore_ioctl(nd, cmd, (void *)param);
} else if (cmd == NEURON_IOCTL_SEMAPHORE_INCREMENT) {
return ncdev_semaphore_ioctl(nd, cmd, (void *)param);
} else if (cmd == NEURON_IOCTL_SEMAPHORE_DECREMENT) {
return ncdev_semaphore_ioctl(nd, cmd, (void *)param);
} else if (cmd == NEURON_IOCTL_EVENT_GET) {
return ncdev_events_ioctl(nd, cmd, (void *)param);
} else if (cmd == NEURON_IOCTL_EVENT_SET) {
return ncdev_events_ioctl(nd, cmd, (void *)param);
} else if (cmd == NEURON_IOCTL_BAR_READ) {
return ncdev_bar_rw(nd, (void *)param, true);
} else if (cmd == NEURON_IOCTL_BAR_WRITE) {
return ncdev_bar_rw(nd, (void *)param, false);
} else if (cmd == NEURON_IOCTL_POST_METRIC) {
return ncdev_post_metric(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_NOTIFICATIONS_INIT) {
return ncdev_nc_nq_init(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_NOTIFICATIONS_DESTROY) {
return ncdev_nc_nq_destroy(nd, (void *)param);
} else if (cmd == NEURON_IOCTL_READ_HW_COUNTERS) {
return ncdev_read_hw_counters(nd, (void *)param);
} else {
pr_err("invalid IOCTL %d\n", cmd);
return -EINVAL;
}
}
static int ncdev_open(struct inode *inode, struct file *filep)
{
struct ncdev *dev;
struct neuron_device *nd;
dev = &devnodes[iminor(inode)];
nd = dev->ndev;
if (!dev) {
pr_err("unable to lock device\n");
return -ENODEV;
}
mutex_lock(&ncdev_device_lock);
dev->open_count++;
if (nd && (nd->current_pid == task_tgid_nr(current) || nd->current_pid == task_ppid_nr(current))) {
nd->current_pid_open_count++;
}
mutex_unlock(&ncdev_device_lock);
filep->private_data = dev;
return 0;
}
static int ncdev_close(struct inode *inode, struct file *filep)
{
struct ncdev *dev = (struct ncdev *)filep->private_data;
struct neuron_device *nd = dev->ndev;
mutex_lock(&ncdev_device_lock);
dev->open_count--;
if (nd && (nd->current_pid == task_tgid_nr(current) || nd->current_pid == task_ppid_nr(current))) {
nd->current_pid_open_count--;
}
mutex_unlock(&ncdev_device_lock);
return ncdev_device_release(dev, nd);
}
static int ncdev_mmap(struct file *filep, struct vm_area_struct *vma)
{
struct ncdev *ncd;
struct neuron_device *nd;
int ret, nc_id, eng_index, nq_type;
u64 offset;
ncd = filep->private_data;
if (ncd == NULL) {
return -EINVAL;
}
nd = ncd->ndev;
if (nd == NULL) {
return -EINVAL;
}
offset = vma->vm_pgoff * PAGE_SIZE;
ret = nc_get_nq_from_mmap_offset(offset, &nc_id, &eng_index, &nq_type);
if (ret) {
return ret;
}
return nc_nq_mmap(nd, nc_id, eng_index, nq_type, vma);
}
static struct file_operations ncdev_fops = {
.owner = THIS_MODULE,
.open = ncdev_open,
.release = ncdev_close,
.unlocked_ioctl = ncdev_ioctl,
.mmap = ncdev_mmap,
};
#define NEURON_MAX_DEV_NAME 32
int ncdev_create_device_node(struct neuron_device *ndev)
{