-
Notifications
You must be signed in to change notification settings - Fork 7
/
metrics.py
123 lines (97 loc) · 4.39 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from math import exp, log10
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
from losses import PerceptualLoss
class ImageReconstructionError(nn.Module):
def __init__(self, metrics=['psnr', 'ssim']):
super(ImageReconstructionError, self).__init__()
for metric in metrics:
if metric.lower() == 'mse':
self.mse = nn.MSELoss()
elif metric.lower() == 'mae':
self.mae = nn.L1Loss()
elif metric.lower() == 'psnr':
self.psnr = nn.MSELoss()
elif metric.lower() == 'ssim':
self.ssim = SSIM()
elif metric.lower() == 'perc':
self.perc = PerceptualLoss()
else:
raise NotImplementedError('metric [%s] is not found' % metric)
def forward(self, tensor_eval, tensor_ref, metric):
"""
both input and reference tensors should be a minibatch, 4D tensor
Also, assuming values ranges in [0, 1]
"""
assert len(tensor_eval.shape) == 4
assert len(tensor_ref.shape) == 4
assert (0. <= tensor_eval).all() and (tensor_eval <= 1.).all()
assert (0. <= tensor_ref).all() and (tensor_ref <= 1.).all()
assert tensor_eval.shape[0] == tensor_ref.shape[0]
metric_layer = getattr(self, metric.lower())
batch_size = tensor_eval.shape[0]
out = 0.
for bid in range(batch_size):
val = metric_layer(tensor_eval[bid:bid+1], tensor_ref[bid:bid+1]).item()
if metric.lower() == 'psnr':
out += 10 * log10(1. / val)
else:
out += val
return out / float(batch_size)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(nn.Module):
def __init__(self, window_size=11, size_average=True, auto_downsample=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.auto_downsample = auto_downsample
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, height, weight) = img1.size()
f = max(1., round(min(height, weight)/256.))
if self.auto_downsample and f > 1:
img1 = F.avg_pool2d(img1, f)
img2 = F.avg_pool2d(img2, f)
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)