This guide walks you through installing a working Tekton Dashboard locally from scratch, collecting logs into an object storage solution like AWS S3, exposing those logs through a service and setting up the Tekton Dashboard to fallback on this service when the logs have been garbage collected by the cluster. It covers the following topics:
- Before you begin
- Overview
- Installing a working Tekton Dashboard locally from scratch
- Installing minio as an object storage solution
- Collecting TaskRuns pod logs
- Creating a service to serve collected logs
- Setting up the Dashboard logs fallback
- Cleaning up
Before you begin, make sure the following tools are installed:
kind
: For creating a local cluster running on top of docker.kubectl
: For interacting with your kubernetes cluster.helm
: For installing helm charts in your kubernetes cluster.
In this walk-through you will deploy minio, an object storage solution that can be accessed like AWS S3 or other cloud providers APIs.
You will use this object storage to store pod logs collected with banzaicloud logging operator from your TaskRun
s.
Then, you will create a service to serve those logs and will plug the Tekton Dashboard to fallback to this service when the logs you're trying to view have been garbage collected and are not available anymore from the kubernetes API.
This walk-through has been tested on Kind v0.15 with Kubernetes v1.25.
If you didn't follow the Tekton Dashboard walk-through with Kind yet, start there to get a local cluster with a working Tekton Dashboard installed.
The following steps will focus on collecting, storing and serving pod logs to finally plug the logs service on the Tekton Dashboard.
First, you will need to deploy a storage solution to store the collected logs. For that, you're going to deploy minio, it exposes the same API as AWS S3.
Note that minio
exposes other APIs similar to other cloud storage providers too.
To deploy minio
in your cluster, run the following command to install the minio
helm chart:
helm repo remove minio
helm repo add minio https://charts.min.io/
helm install minio --create-namespace --namespace tools \
--set resources.requests.memory=100Mi \
--set replicas=1 \
--set persistence.enabled=false \
--set mode=standalone \
--set rootUser=rootuser,rootPassword=rootpass123 \
--set consoleIngress.enabled=true,consoleIngress.hosts[0]=minio.127.0.0.1.nip.io \
minio/minio
The deployed instance will use access and secret keys console
/ console123
and the service will be exposed externally at http://minio.127.0.0.1.nip.io
.
For this walk-through minio
will use in-memory storage but you can enable persistent storage by changing the config.
The minio
dashboard is available at the URL http://minio.127.0.0.1.nip.io
.
Now you have a running storage, you can start collecting logs from the pods baking your TaskRun
s and store those logs in minio
.
To collect logs, you will install banzaicloud logging operator. The logging operator
makes it easy to deploy a fluentd/fluentbit combo for streaming logs to a destination of your choice.
First, deploy the logging operator by running the following commands:
helm repo add banzaicloud-stable https://kubernetes-charts.banzaicloud.com
helm repo update
helm upgrade --install --version 3.17.10 --wait --create-namespace --namespace tools logging-operator banzaicloud-stable/logging-operator --set createCustomResource=false
To start collecting logs you will need to create the logs pipeline using the available CRDs:
Logging
will deploy the necessary fluentd/fluentbit workloads:
kubectl -n tools apply -f - <<EOF
apiVersion: logging.banzaicloud.io/v1beta1
kind: Logging
metadata:
name: logging
spec:
fluentd: {}
fluentbit: {}
controlNamespace: tools
EOF
This is a very simple deployment, please note that the position database and buffer volumes are ephemeral, this will stream logs again if pods restart.
ClusterOutput
defines the output of the logs pipeline. In our caseminio
(API-compatible with AWS S3):
kubectl -n tools apply -f - <<EOF
apiVersion: logging.banzaicloud.io/v1beta1
kind: ClusterOutput
metadata:
name: s3
spec:
s3:
aws_key_id:
value: console
aws_sec_key:
value: console123
s3_endpoint: http://minio.tools.svc.cluster.local:9000
s3_bucket: tekton-logs
s3_region: tekton
force_path_style: 'true'
store_as: text
path: \${\$.kubernetes.namespace_name}/\${\$.kubernetes.pod_name}/\${\$.kubernetes.container_name}/
s3_object_key_format: '%{path}%{time_slice}_%{index}.log'
buffer:
tags: time,\$.kubernetes.namespace_name,\$.kubernetes.pod_name,\$.kubernetes.container_name
timekey: 1m
timekey_wait: 1m
timekey_use_utc: true
format:
type: single_value
message_key: message
EOF
The ClusterOutput
above will stream logs to our minio
storage in a tekton-logs
bucket. It will buffer logs and will store one file per minute in the <namespace_name>/<pod_name>/<container_name>/
path. All metadata will be omitted and only the log message will be stored, it will be the raw pod logs.
ClusterFlow
defines how the collected logs are dispatched to the outputs:
kubectl -n tools apply -f - <<EOF
apiVersion: logging.banzaicloud.io/v1beta1
kind: ClusterFlow
metadata:
name: flow
spec:
globalOutputRefs:
- s3
match:
- select:
labels:
app.kubernetes.io/managed-by: tekton-pipelines
EOF
The ClusterFlow
above takes all logs from pods that have the app.kubernetes.io/managed-by: tekton-pipelines
label (those are the pods baking TaskRun
s) and dispatches them to the ClusterOutput
created in the previous step.
Running the PipelineRun
below produces logs and you will see corresponding objects being added in minio
as logs are collected and stored by the logs pipeline.
kubectl -n default create -f - <<EOF
apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
generateName: sample-
spec:
pipelineSpec:
tasks:
- name: gen-log
taskSpec:
steps:
- name: gen-log
image: ubuntu
script: |
#!/usr/bin/env bash
for i in {1..10}
do
echo "Log line \$i"
sleep 1s
done
- name: gen-log-2
image: ubuntu
script: |
#!/usr/bin/env bash
for i in {1..20}
do
echo "Log line \$i"
sleep 1s
done
EOF
Now pod logs are collected and stored in your object storage, you will create a service to serve those logs.
Given a namespace
, pod
and container
, the service will list files from s3, then stream the content of those files to serve logs to the caller.
Run the command below to create the kubernetes Deployment
to serve your logs:
kubectl apply -n tools -f - <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: logs-server
labels:
app: logs-server
spec:
replicas: 1
selector:
matchLabels:
app: logs-server
template:
metadata:
labels:
app: logs-server
spec:
containers:
- name: node
image: node:14
ports:
- containerPort: 3000
command:
- bash
args:
- -c
- |
cat <<EOF > server.js
const express = require('express');
const aws = require('aws-sdk');
aws.config.update({
endpoint: 'minio.tools.svc.cluster.local:9000',
accessKeyId: 'console',
secretAccessKey: 'console123',
region: 'tekton',
s3ForcePathStyle: true,
sslEnabled: false
});
const s3 = new aws.S3();
const app = express();
const bucket = 'tekton-logs'
function streamLogs(namespace, pod, container, response) {
s3.listObjects({ Bucket: bucket, Delimiter: '', Prefix: namespace+'/'+pod+'/'+container+'/' })
.promise()
.then(files =>
files.Contents.sort((a, b) => a.Key.localeCompare(b.Key)).reduce((acc, file) =>
acc.then(() =>
new Promise(fulfill =>
s3.getObject({Bucket: bucket, Key: file.Key})
.createReadStream()
.on("finish", fulfill)
.pipe(response, { end: false })
)
),
Promise.resolve()
)
)
.then(() => response.end());
}
app.get('/logs/:namespace/:pod/:container', (req, res) => streamLogs(req.params.namespace, req.params.pod, req.params.container, res));
app.listen(3000, '0.0.0.0');
EOF
npm install [email protected] [email protected]
node ./server.js
EOF
This deployment will start a container running nodejs
. It will install express
web server and aws-sdk
to interact with S3 (configured to hit your minio
endpoint).
Then it will run a web server exposing the '/logs/:namespace/:pod/:container'
route to serve logs fetched from s3.
To make this available you will need to deploy a Service
and an Ingress
rule to expose the Deployment
:
kubectl apply -n tools -f - <<EOF
kind: Service
apiVersion: v1
metadata:
name: logs-server
labels:
app: logs-server
spec:
ports:
- port: 3000
targetPort: 3000
selector:
app: logs-server
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: tekton-logs
spec:
rules:
- host: logs.127.0.0.1.nip.io
http:
paths:
- pathType: ImplementationSpecific
backend:
service:
name: logs-server
port:
number: 3000
EOF
The logs server is available at http://logs.127.0.0.1.nip.io
.
The last step in this walk-through is to setup the Tekton Dashboard to use the logs server you created above. The logs server will act as a fallback when the logs are not available anymore because the underlying pods baking TaskRun
s are gone away.
First, delete the pods for your TaskRun
s so that the Dashboard backend can't find the pod logs:
kubectl delete pod -l=app.kubernetes.io/managed-by=tekton-pipelines -n default
The Dashboard displays the Unable to fetch logs
message when browsing tasks.
Second, patch the Dashboard deployment to add the --external-logs=http://logs-server.tools.svc.cluster.local:3000/logs
option:
kubectl patch deployment tekton-dashboard -n tekton-pipelines --type='json' \
--patch='[{"op": "add", "path": "/spec/template/spec/containers/0/args/-", "value": "--external-logs=http://logs-server.tools.svc.cluster.local:3000/logs"}]'
The logs are now displayed again, fetched from the logs server configured in the previous steps.
NOTE: Alternatively you can use the --external-logs
argument when invoking the installer
script:
curl -sL https://raw.githubusercontent.com/tektoncd/dashboard/main/scripts/release-installer | \
bash -s -- install latest --external-logs http://logs-server.tools.svc.cluster.local:3000/logs
kubectl wait -n tekton-pipelines \
--for=condition=ready pod \
--selector=app.kubernetes.io/part-of=tekton-dashboard,app.kubernetes.io/component=dashboard \
--timeout=90s
To clean up the local kind cluster, follow the cleaning up instructions in Tekton Dashboard walk-through with Kind.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License. Code samples are licensed under the Apache 2.0 License.