-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasic.lean
211 lines (180 loc) · 7.59 KB
/
basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import topology.sheaves.sheaf
import algebraic_geometry.prime_spectrum.basic
import algebraic_geometry.structure_sheaf
import algebraic_geometry.Spec
import algebra.category.Module.basic
import module_localisation.basic
import algebra.category.Group.limits
namespace algebraic_geometry
open Top
open Top.presheaf
open topological_space
open category_theory
open opposite
open localized_module
universes u v
variables {R : CommRing.{u}} (M : Module.{u} R)
local notation `Spec.T` := Spec.Top_obj R
namespace MSpec
abbreviation localizations (p : Spec.T) : Type u :=
localized_module M (p.as_ideal.prime_compl)
def is_fraction {U : opens Spec.T} (f : Π x : U, localizations M x) : Prop :=
∃ (m : M) (s : R), ∀ x : U, ∃ nin: ¬ (s ∈ x.1.as_ideal), f x = localized_module.mk m ⟨s, nin⟩
def is_fraction_prelocal : @prelocal_predicate Spec.T (localizations M) :=
{ pred := λ U f, is_fraction M f,
res := λ U V i f ⟨m, s, h⟩, ⟨m, s, λ x, begin
rcases h (i x) with ⟨nin, h⟩,
exact ⟨nin, h⟩,
end⟩ }
def is_locally_fraction : local_predicate (localizations M) :=
(is_fraction_prelocal M).sheafify
lemma is_locally_fraction_pred {U : opens Spec.T}
(f : Π x : U, localizations M x) :
(is_locally_fraction M).pred f =
∀ x : U, ∃ (V : opens Spec.T) (m : x.1 ∈ V) (i : V ⟶ U) (m : M) (s : R),
∀ (y : V), ∃ (nin : ¬ (s ∈ y.1.as_ideal)),
f (by exact i y) = localized_module.mk m ⟨s, nin⟩ := rfl
def section_add_group (U : (opens Spec.T)ᵒᵖ) : add_subgroup (Π (x : U.unop), localizations M x) :=
{ carrier := {f | (is_locally_fraction M).pred f},
add_mem' := λ f g hf hg x, begin
rcases hf x with ⟨Vf, mem1, i1, m1, s1, hf⟩,
rcases hg x with ⟨Vg, mem2, i2, m2, s2, hg⟩,
refine ⟨Vf ⊓ Vg, ⟨mem1, mem2⟩, hom_of_le inf_le_left ≫ i1, s2 • m1 + s1 • m2, s1 * s2, _⟩,
intros y,
rcases hf ((hom_of_le inf_le_left : Vf ⊓ Vg ⟶ Vf) y) with ⟨nin1, h1⟩,
rcases hg ((hom_of_le inf_le_right : Vf ⊓ Vg ⟶ Vg) y) with ⟨nin2, h2⟩,
refine ⟨λ r, (y.1.is_prime.mem_or_mem r).elim nin1 nin2, _⟩,
dsimp only at h1 h2 ⊢,
rw [pi.add_apply],
erw [h1, h2],
rw [localized_module.mk_add_mk],
congr' 1,
end,
zero_mem' := λ x, begin
refine ⟨U.unop, x.2, 𝟙 _, 0, 1, λ y, ⟨by simpa [←ideal.eq_top_iff_one] using y.1.is_prime.ne_top, _⟩⟩,
dsimp only,
rw [localized_module.mk_zero],
refl,
end,
neg_mem' := λ f hf x, begin
rcases hf x with ⟨Vf, mem1, i1, m1, s1, hf⟩,
refine ⟨Vf, mem1, i1, -m1, s1, λ y, _⟩,
rcases hf y with ⟨nin1, hf⟩,
refine ⟨nin1, _⟩,
simp only at hf ⊢,
change - (f _) = _,
rw [hf, localized_module.neg_mk],
end }
def structure_sheaf_in_Type : sheaf Type* (Spec.T):=
subsheaf_to_Types (is_locally_fraction M)
instance ab_structure_sheaf_in_Type_obj (U : (opens Spec.T)ᵒᵖ) :
add_comm_group ((structure_sheaf_in_Type M).1.obj U) := (section_add_group M U).to_add_comm_group
def structure_presheaf_in_Ab : presheaf Ab.{u} (Spec.T) :=
{ obj := λ U, AddCommGroup.of ((structure_sheaf_in_Type M).1.obj U),
map := λ U V i,
{ to_fun := (structure_sheaf_in_Type M).1.map i,
map_zero' := rfl,
map_add' := λ _ _, rfl } }
def structure_presheaf_comp_forget :
structure_presheaf_in_Ab M ⋙ (forget AddCommGroup) ≅ (structure_sheaf_in_Type M).1 :=
nat_iso.of_components (λ U, iso.refl _) (by tidy)
def structure_sheaf : sheaf Ab.{u} (Spec.T) :=
⟨structure_presheaf_in_Ab M,
(@@is_sheaf_iff_is_sheaf_comp _ _ (forget Ab) _ _ _ (AddCommGroup.forget_preserves_limits.{u u}) (structure_presheaf_in_Ab M)).mpr
(is_sheaf_of_iso (structure_presheaf_comp_forget M).symm (structure_sheaf_in_Type M).2)⟩
instance (U : (opens Spec.T)ᵒᵖ) (x : U.unop) :
module (structure_sheaf.localizations R (x : Spec.T)) (localizations M x) :=
localized_module.is_module
instance (U : (opens Spec.T)ᵒᵖ) :
has_scalar ((Spec.structure_sheaf R).1.obj U) ((MSpec.structure_sheaf M).1.obj U) :=
{ smul := λ r m, ⟨λ x, (r.1 x) • (m.1 x), λ x, begin
rcases r.2 x with ⟨Vr, mem1, i1, ρ, s, hr⟩,
rcases m.2 x with ⟨Vm, mem2, i2, m, t, ht⟩,
refine ⟨Vr ⊓ Vm, ⟨mem1, mem2⟩, hom_of_le inf_le_left ≫ i1, ρ • m, s * t, λ y, _⟩,
rcases hr ((hom_of_le (inf_le_left : Vr ⊓ Vm ≤ _)) y) with ⟨nin1, h1⟩,
rcases ht ((hom_of_le (inf_le_right : Vr ⊓ Vm ≤ _)) y) with ⟨nin2, h2⟩,
dsimp only at h1 h2 ⊢,
refine ⟨λ r, (y.1.is_prime.mem_or_mem r).elim nin1 nin2, _⟩,
have h3 : r.1 ((hom_of_le (inf_le_left : Vr ⊓ Vm ≤ _) ≫ i1) y) = localization.mk ρ ⟨s, nin1⟩,
{ rw [localization.mk_eq_mk'],
erw is_localization.eq_mk'_iff_mul_eq,
exact h1, },
erw [h3, h2],
rw localized_module.mk_smul_mk,
refl,
end⟩ }
protected lemma smul.val {U : (opens Spec.T)ᵒᵖ} (r : (Spec.structure_sheaf R).1.obj U) (m : (MSpec.structure_sheaf M).1.obj U) :
(r • m).1 = r.1 • m.1 := rfl
protected lemma smul.apply {U : (opens Spec.T)ᵒᵖ} (r : (Spec.structure_sheaf R).1.obj U) (m : (MSpec.structure_sheaf M).1.obj U) (x : U.unop) :
(r • m).1 x = r.1 x • m.1 x := rfl
protected lemma one_smul {U : (opens Spec.T)ᵒᵖ} (m : (MSpec.structure_sheaf M).1.obj U) :
(1 : (Spec.structure_sheaf R).1.obj U) • m = m :=
begin
rw [subtype.ext_iff_val],
ext1 x,
rw [MSpec.smul.apply],
change (1 : Π x : U.unop, structure_sheaf.localizations R (x : Spec.T)) x • (m.1 x) = m.1 x,
erw pi.one_apply,
rw one_smul,
end
protected lemma mul_smul {U : (opens Spec.T)ᵒᵖ}
(r1 r2 : (Spec.structure_sheaf R).1.obj U) (m : (MSpec.structure_sheaf M).1.obj U) :
(r1 * r2) • m = r1 • r2 • m :=
begin
rw [subtype.ext_iff_val],
ext1 x,
rw [MSpec.smul.apply, MSpec.smul.apply, MSpec.smul.apply],
change (r1.1 * r2.1) x • _ = _,
erw [pi.mul_apply],
rw mul_smul,
end
protected lemma smul_add {U : (opens Spec.T)ᵒᵖ}
(r : (Spec.structure_sheaf R).1.obj U) (m1 m2 : (MSpec.structure_sheaf M).1.obj U) :
r • (m1 + m2) = r • m1 + r • m2 :=
begin
rw [subtype.ext_iff_val],
ext1 x,
rw [MSpec.smul.apply],
change r.1 x • (m1.1 + m2.1) x = (r.1 x • m1.1 x) + (r.1 x • m2.1 x),
rw [pi.add_apply, smul_add],
end
protected lemma smul_zero {U : (opens Spec.T)ᵒᵖ}
(r : (Spec.structure_sheaf R).1.obj U) :
r • (0 : (MSpec.structure_sheaf M).1.obj U) = 0 :=
begin
rw [subtype.ext_iff_val],
ext1 x,
rw [MSpec.smul.apply],
change r.1 x • (0 : Π x, localizations M x) x = (0 : Π x, localizations M x) x,
rw [pi.zero_apply, smul_zero],
end
protected lemma add_smul {U : (opens Spec.T)ᵒᵖ}
(r1 r2 : (Spec.structure_sheaf R).1.obj U) (m : (MSpec.structure_sheaf M).1.obj U) :
(r1 + r2) • m = r1 • m + r2 • m :=
begin
rw [subtype.ext_iff_val],
ext1 x,
rw [MSpec.smul.apply],
change (r1.1 + r2.1) x • _ = (r1.1 x • m.1 x + r2.1 x • m.1 x),
rw [pi.add_apply, add_smul],
end
protected lemma zero_smul {U : (opens Spec.T)ᵒᵖ} (m : (MSpec.structure_sheaf M).1.obj U) :
(0 : (Spec.structure_sheaf R).1.obj U) • m = 0 :=
begin
rw [subtype.ext_iff_val],
ext1 x,
rw [MSpec.smul.apply],
change (0 : Π x, structure_sheaf.localizations R (x : Spec.T)) x • m.1 x = (0 : Π x, localizations M x) x,
rw [pi.zero_apply, zero_smul, pi.zero_apply],
end
instance (U : (opens Spec.T)ᵒᵖ) :
module ((Spec.structure_sheaf R).1.obj U) ((MSpec.structure_sheaf M).1.obj U) :=
{ smul := (•),
one_smul := MSpec.one_smul M,
mul_smul := MSpec.mul_smul M,
smul_add := MSpec.smul_add M,
smul_zero := MSpec.smul_zero M,
add_smul := MSpec.add_smul M,
zero_smul := MSpec.zero_smul M }
end MSpec
end algebraic_geometry