-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplain_nnet.py
254 lines (225 loc) · 9.48 KB
/
plain_nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import logging
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from network import Net
class PlainNetEstimator:
def __init__(
self,
n_inputs: int,
n_layers: int,
n_hidden: int,
n_out: int,
full_tree_pen: float,
input_pen: float,
max_iters: int,
max_prox_iters: int,
batch_size: int,
num_classes: int,
weight: list,
dropout: float,
input_filter_layer: bool = False,
):
self.n_inputs = n_inputs
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_out = n_out
self.full_tree_pen = full_tree_pen
self.input_pen = input_pen
self.input_filter_layer = input_filter_layer
self.max_iters = max_iters
self.max_prox_iters = max_prox_iters
self.batch_size = batch_size
self.dropout = dropout
self.num_classes = num_classes
assert num_classes != 1
self.weight = weight
self.criterion = (
nn.CrossEntropyLoss(weight=torch.Tensor(weight))
if self.num_classes >= 2
else nn.MSELoss()
)
self.score_criterion = (
nn.CrossEntropyLoss() if self.num_classes >= 2 else nn.MSELoss()
)
def run_prox_gd_step(self, trainloader, step_sizes=[1, 0.1, 1e-2, 1e-3, 1e-4]):
def _soft_threshold(parameter, soft_thres):
"""
Do soft thresholding (prox operator for lasso)
"""
soft_thres_mask = torch.abs(parameter.data) < soft_thres
soft_thres_pos_mask = parameter.data > soft_thres
soft_thres_neg_mask = parameter.data < -soft_thres
parameter.data[soft_thres_mask] = 0
parameter.data[soft_thres_pos_mask] -= soft_thres
parameter.data[soft_thres_neg_mask] += soft_thres
optimizer = optim.SGD(self.net.parameters(), lr=1)
state_dict = copy.deepcopy(self.net.state_dict())
for i, data in enumerate(trainloader):
# get the inputs; is a list of [inputs, labels]
inputs, labels = data
labels = labels if self.num_classes == 0 else labels[:, 0]
for step_size in step_sizes:
# zero the parameter gradients
optimizer.zero_grad()
outputs = self.net.forward(inputs)
empirical_loss = self.criterion(outputs, labels)
loss = (
empirical_loss
+ self.full_tree_pen * self.net.weight_matrix_norm()
+ self.input_pen * self.net.input_factor_norm()
)
empirical_loss.backward()
# Update params with respect to smooth loss gradient
for p in self.net.parameters():
p.grad *= step_size
optimizer.step()
# Now apply prox step
# Recall that the lasso penalty applies to the bias as well if doing classification
soft_thres_full_tree = step_size * self.full_tree_pen
for layer in self.net.layers:
_soft_threshold(layer.weight, soft_thres_full_tree)
if self.num_classes >= 2:
_soft_threshold(layer.bias, soft_thres_full_tree)
if self.net.input_filter_layer:
soft_thres_input = step_size * self.input_pen
_soft_threshold(self.net.input_factors, soft_thres_input)
# reevaluate
optimizer.zero_grad()
outputs = self.net.forward(inputs)
new_empirical_loss = self.criterion(outputs, labels)
new_loss = (
new_empirical_loss
+ self.full_tree_pen * self.net.weight_matrix_norm()
+ self.input_pen * self.net.input_factor_norm()
)
if new_loss < loss:
logging.info(
f"success w step size {step_size}. new loss {new_loss} old loss {loss}"
)
return True, new_loss.item(), new_empirical_loss.item()
else:
logging.info(
f"try smaller step size. this step size {step_size} didnt work"
)
# Reset model parameters
self.net.load_state_dict(state_dict)
return False, loss.item(), empirical_loss.item()
def run_epoch(self, optimizer, trainloader):
for i, data in enumerate(trainloader):
# get the inputs; is a list of [inputs, labels]
inputs, labels = data
labels = labels if self.num_classes == 0 else labels[:, 0]
# zero the parameter gradients
optimizer.zero_grad()
outputs = self.net.forward(inputs)
empirical_loss = self.criterion(outputs, labels)
loss = (
empirical_loss
+ self.full_tree_pen * self.net.weight_matrix_norm()
+ self.input_pen * self.net.input_factor_norm()
)
loss.backward()
optimizer.step()
return loss.item(), empirical_loss.item()
def fit(self, x: np.ndarray, y: np.ndarray, state_dict: dict = None) -> None:
# Assemble data
torch_y = (
torch.Tensor(y)
if self.num_classes == 0
else torch.from_numpy(y.astype(int))
)
dataset = TensorDataset(torch.Tensor(x), torch_y)
trainloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
self.net = Net(
n_layers=self.n_layers,
n_input=self.n_inputs,
n_hidden=self.n_hidden,
n_out=self.n_out,
dropout=self.dropout,
input_filter_layer=self.input_filter_layer,
)
if state_dict is not None:
self.net.load_state_dict(state_dict)
print("loaded state dict")
optimizer = optim.Adam(self.net.parameters(), lr=0.001)
for epoch in range(self.max_iters): # loop over the set multiple times
loss, empirical_loss = self.run_epoch(optimizer, trainloader)
# print statistics
if epoch % 100 == 0:
logging.info(f"[{epoch}] loss: {loss}")
logging.info(f"[{epoch}] empirical: {empirical_loss}")
print(f"[{epoch}] loss: {loss} empirical: {empirical_loss}")
trainloader = DataLoader(dataset, batch_size=x.shape[0])
for i in range(self.max_prox_iters):
did_step, loss, empirical_loss = self.run_prox_gd_step(trainloader)
if epoch % 10 == 0:
logging.info(f"[prox {i}] loss: {loss}")
logging.info(f"[prox {i}] empirical_loss: {empirical_loss}")
self.net.get_net_struct()
if not did_step:
break
def score(self, x: np.ndarray, y: np.ndarray) -> float:
torch_y = (
torch.Tensor(y)
if self.num_classes == 0
else torch.from_numpy(y.astype(int))[:, 0]
)
return -self.score_criterion(self.net(torch.Tensor(x)), torch_y).item()
def predict(self, x: np.ndarray) -> np.ndarray:
output = self.net(torch.Tensor(x)).detach().numpy()
if self.num_classes == 0:
return output
else:
raise NotImplementedError()
# return np.exp(output)/np.sum(np.exp(output), axis=1, keepdims=True)
def get_params(self, deep=True) -> dict:
return {
"n_layers": self.n_layers,
"n_inputs": self.n_inputs,
"n_hidden": self.n_hidden,
"n_out": self.n_out,
"full_tree_pen": self.full_tree_pen,
"input_pen": self.input_pen,
"max_iters": self.max_iters,
"max_prox_iters": self.max_prox_iters,
"batch_size": self.batch_size,
"num_classes": self.num_classes,
"weight": self.weight,
"dropout": self.dropout,
"input_filter_layer": self.input_filter_layer,
}
def set_params(self, **param_dict):
print(param_dict)
if "n_layers" in param_dict:
self.n_layers = param_dict["n_layers"]
if "n_inputs" in param_dict:
self.n_inputs = param_dict["n_inputs"]
if "n_hidden" in param_dict:
self.n_hidden = param_dict["n_hidden"]
if "n_out" in param_dict:
self.n_out = param_dict["n_out"]
if "full_tree_pen" in param_dict:
self.full_tree_pen = param_dict["full_tree_pen"]
if "input_pen" in param_dict:
self.input_pen = param_dict["input_pen"]
if "max_iters" in param_dict:
self.max_iters = param_dict["max_iters"]
if "max_prox_iters" in param_dict:
self.max_prox_iters = param_dict["max_prox_iters"]
if "batch_size" in param_dict:
self.batch_size = param_dict["batch_size"]
if "num_classes" in param_dict:
self.num_classes = param_dict["num_classes"]
if "weight" in param_dict:
self.weight = param_dict["weight"]
if "dropout" in param_dict:
self.dropout = param_dict["dropout"]
if "input_filter_layer" in param_dict:
self.input_filter_layer = param_dict["input_filter_layer"]
return self