-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrnn.py
536 lines (416 loc) · 20.5 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import torch
from torch.nn import Parameter
from weight_sage import WeightedSAGEConv
from torch_geometric.nn.inits import glorot, zeros
import torch.nn.functional as F
from torch.nn import LSTMCell, GRUCell, RNNCell, LSTM as TorchLSTM
from graph_nets import GraphLinear
from torch_geometric.nn import global_mean_pool as gap
from torch_geometric.nn import global_max_pool as gmp
from torch_geometric.nn import ASAPooling, TopKPooling, EdgePooling, SAGPooling
from torch_geometric_temporal.nn import DCRNN, GConvLSTM, GConvGRU
from torch.nn.init import xavier_uniform
#Recurrent Neural Network Modules
class LSTM(torch.nn.Module):
# This is an adaptation of torch_geometric_temporal.nn.GConvLSTM, with ChebConv replaced by the given model.
"""
Args:
in_channels (int): Number of input features.
out_channels (int): Number of output features.
normalization (str, optional): The normalization scheme for the graph
Laplacian (default: :obj:`"sym"`):
1. :obj:`None`: No normalization
:math:`\mathbf{L} = \mathbf{D} - \mathbf{A}`
2. :obj:`"sym"`: Symmetric normalization
:math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A}
\mathbf{D}^{-1/2}`
3. :obj:`"rw"`: Random-walk normalization
:math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}`
You need to pass :obj:`lambda_max` to the :meth:`forward` method of
this operator in case the normalization is non-symmetric.
:obj:`\lambda_max` should be a :class:`torch.Tensor` of size
:obj:`[num_graphs]` in a mini-batch scenario and a
scalar/zero-dimensional tensor when operating on single graphs.
You can pre-compute :obj:`lambda_max` via the
:class:`torch_geometric.transforms.LaplacianLambdaMax` transform.
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
module (torch.nn.Module, optional): The layer or set of layers used to calculate each gate.
Could also be a lambda function returning a torch.nn.Module when given the parameters in_channels: int, out_channels: int, and bias: bool
"""
def __init__(self, in_channels: int, out_channels: int, bias: bool=True, module=WeightedSAGEConv):
super(LSTM, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.bias = bias
self.module = module
self._create_parameters_and_layers()
self._set_parameters()
def _create_input_gate_parameters_and_layers(self):
self.conv_x_i = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_i = self.module(in_channels=self.out_channels,
out_channels=self.out_channels,
bias=self.bias)
self.w_c_i = Parameter(torch.Tensor(1, self.out_channels))
self.b_i = Parameter(torch.Tensor(1, self.out_channels))
def _create_forget_gate_parameters_and_layers(self):
self.conv_x_f = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_f = self.module(in_channels=self.out_channels,
out_channels=self.out_channels,
bias=self.bias)
self.w_c_f = Parameter(torch.Tensor(1, self.out_channels))
self.b_f = Parameter(torch.Tensor(1, self.out_channels))
def _create_cell_state_parameters_and_layers(self):
self.conv_x_c = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_c = self.module(in_channels=self.out_channels,
out_channels=self.out_channels,
bias=self.bias)
self.b_c = Parameter(torch.Tensor(1, self.out_channels))
def _create_output_gate_parameters_and_layers(self):
self.conv_x_o = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_o = self.module(in_channels=self.out_channels,
out_channels=self.out_channels,
bias=self.bias)
self.w_c_o = Parameter(torch.Tensor(1, self.out_channels))
self.b_o = Parameter(torch.Tensor(1, self.out_channels))
def _create_parameters_and_layers(self):
self._create_input_gate_parameters_and_layers()
self._create_forget_gate_parameters_and_layers()
self._create_cell_state_parameters_and_layers()
self._create_output_gate_parameters_and_layers()
def _set_parameters(self):
glorot(self.w_c_i)
glorot(self.w_c_f)
glorot(self.w_c_o)
zeros(self.b_i)
zeros(self.b_f)
zeros(self.b_c)
zeros(self.b_o)
def _set_hidden_state(self, X, H):
if H is None:
H = torch.zeros(X.shape[0], self.out_channels)
return H
def _set_cell_state(self, X, C):
if C is None:
C = torch.zeros(X.shape[0], self.out_channels)
return C
def _calculate_input_gate(self, X, edge_index, edge_weight, H, C):
I = self.conv_x_i(X, edge_index, edge_weight)
I = I + self.conv_h_i(H, edge_index, edge_weight)
I = I + (self.w_c_i*C)
I = I + self.b_i
I = torch.sigmoid(I)
return I
def _calculate_forget_gate(self, X, edge_index, edge_weight, H, C):
F = self.conv_x_f(X, edge_index, edge_weight)
F = F + self.conv_h_f(H, edge_index, edge_weight)
F = F + (self.w_c_f*C)
F = F + self.b_f
F = torch.sigmoid(F)
return F
def _calculate_cell_state(self, X, edge_index, edge_weight, H, C, I, F):
T = self.conv_x_c(X, edge_index, edge_weight)
T = T + self.conv_h_c(H, edge_index, edge_weight)
T = T + self.b_c
T = torch.tanh(T)
C = F*C + I*T
return C
def _calculate_output_gate(self, X, edge_index, edge_weight, H, C):
O = self.conv_x_o(X, edge_index, edge_weight)
O = O + self.conv_h_o(H, edge_index, edge_weight)
O = O + (self.w_c_o*C)
O = O + self.b_o
O = torch.sigmoid(O)
return O
def _calculate_hidden_state(self, O, C):
H = O * torch.tanh(C)
return H
def forward(self, X: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: torch.FloatTensor=None,
H: torch.FloatTensor=None, C: torch.FloatTensor=None) -> torch.FloatTensor:
"""
Making a forward pass. If edge weights are not present the forward pass
defaults to an unweighted graph. If the hidden state and cell state
matrices are not present when the forward pass is called these are
initialized with zeros.
Arg types:
* **X** *(PyTorch Float Tensor)* - Node features.
* **edge_index** *(PyTorch Long Tensor)* - Graph edge indices.
* **edge_weight** *(PyTorch Long Tensor, optional)* - Edge weight vector.
* **H** *(PyTorch Float Tensor, optional)* - Hidden state matrix for all nodes.
* **C** *(PyTorch Float Tensor, optional)* - Cell state matrix for all nodes.
Return types:
* **H** *(PyTorch Float Tensor)* - Hidden state matrix for all nodes.
* **C** *(PyTorch Float Tensor)* - Cell state matrix for all nodes.
"""
H = self._set_hidden_state(X, H)
C = self._set_cell_state(X, C)
I = self._calculate_input_gate(X, edge_index, edge_weight, H, C)
F = self._calculate_forget_gate(X, edge_index, edge_weight, H, C)
C = self._calculate_cell_state(X, edge_index, edge_weight, H, C, I, F)
O = self._calculate_output_gate(X, edge_index, edge_weight, H, C)
H = self._calculate_hidden_state(O, C)
return H, C
class GRU(torch.nn.Module):
#This is an adaptation of torch_geometric_temporal.nn.GConvGRU, with ChebConv replaced by the given model.
r"""An implementation of the Chebyshev Graph Convolutional Gated Recurrent Unit
Cell. For details see this paper: `"Structured Sequence Modeling with Graph
Convolutional Recurrent Networks." <https://arxiv.org/abs/1612.07659>`_
Args:
in_channels (int): Number of input features.
out_channels (int): Number of output features.
K (int): Chebyshev filter size :math:`K`.
normalization (str, optional): The normalization scheme for the graph
Laplacian (default: :obj:`"sym"`):
1. :obj:`None`: No normalization
:math:`\mathbf{L} = \mathbf{D} - \mathbf{A}`
2. :obj:`"sym"`: Symmetric normalization
:math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A}
\mathbf{D}^{-1/2}`
3. :obj:`"rw"`: Random-walk normalization
:math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}`
You need to pass :obj:`lambda_max` to the :meth:`forward` method of
this operator in case the normalization is non-symmetric.
:obj:`\lambda_max` should be a :class:`torch.Tensor` of size
:obj:`[num_graphs]` in a mini-batch scenario and a
scalar/zero-dimensional tensor when operating on single graphs.
You can pre-compute :obj:`lambda_max` via the
:class:`torch_geometric.transforms.LaplacianLambdaMax` transform.
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
module (torch.nn.Module, optional): The layer or set of layers used to calculate each gate.
Could also be a lambda function returning a torch.nn.Module when given the parameters in_channels: int, out_channels: int, and bias: bool
"""
def __init__(self, in_channels: int, out_channels: int, bias: bool=True, module=WeightedSAGEConv):
super(GRU, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.bias = bias
self.module = module
self._create_parameters_and_layers()
def _create_update_gate_parameters_and_layers(self):
self.conv_x_z = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_z = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
def _create_reset_gate_parameters_and_layers(self):
self.conv_x_r = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_r = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
def _create_candidate_state_parameters_and_layers(self):
self.conv_x_h = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
self.conv_h_h = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
def _create_parameters_and_layers(self):
self._create_update_gate_parameters_and_layers()
self._create_reset_gate_parameters_and_layers()
self._create_candidate_state_parameters_and_layers()
def _set_hidden_state(self, X, H):
if H is None:
H = torch.zeros(X.shape[0], self.out_channels)
return H
def _calculate_update_gate(self, X, edge_index, edge_weight, H):
Z = self.conv_x_z(X, edge_index, edge_weight)
Z = Z + self.conv_h_z(H, edge_index, edge_weight)
Z = torch.sigmoid(Z)
return Z
def _calculate_reset_gate(self, X, edge_index, edge_weight, H):
R = self.conv_x_r(X, edge_index, edge_weight)
R = R + self.conv_h_r(H, edge_index, edge_weight)
R = torch.sigmoid(R)
return R
def _calculate_candidate_state(self, X, edge_index, edge_weight, H, R):
H_tilde = self.conv_x_h(X, edge_index, edge_weight)
H_tilde = H_tilde + self.conv_h_h(H*R, edge_index, edge_weight)
H_tilde = torch.tanh(H_tilde)
return H_tilde
def _calculate_hidden_state(self, Z, H, H_tilde):
H = Z*H + (1-Z)*H_tilde
return H
def forward(self, X: torch.FloatTensor, edge_index: torch.LongTensor,
edge_weight: torch.FloatTensor=None, H: torch.FloatTensor=None, C: torch.FloatTensor=None) -> torch.FloatTensor:
"""
Making a forward pass. If edge weights are not present the forward pass
defaults to an unweighted graph. If the hidden state matrix is not present
when the forward pass is called it is initialized with zeros.
Arg types:
* **X** *(PyTorch Float Tensor)* - Node features.
* **edge_index** *(PyTorch Long Tensor)* - Graph edge indices.
* **edge_weight** *(PyTorch Long Tensor, optional)* - Edge weight vector.
* **H** *(PyTorch Float Tensor, optional)* - Hidden state matrix for all nodes.
Return types:
* **H** *(PyTorch Float Tensor)* - Hidden state matrix for all nodes.
"""
H = self._set_hidden_state(X, H)
Z = self._calculate_update_gate(X, edge_index, edge_weight, H)
R = self._calculate_reset_gate(X, edge_index, edge_weight, H)
H_tilde = self._calculate_candidate_state(X, edge_index, edge_weight, H, R)
H = self._calculate_hidden_state(Z, H, H_tilde)
return H, C
class VanillaRNN(torch.nn.Module):
def __init__(self, in_channels: int, out_channels: int, bias: bool=True, module=WeightedSAGEConv):
super(VanillaRNN, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.module = module
self.bias = bias
#Hidden input
self.conv_h_i = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
#Hidden hidden
self.conv_h_h = self.module(in_channels=self.in_channels,
out_channels=self.out_channels,
bias=self.bias)
def forward(self, X: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: torch.FloatTensor=None, H: torch.FloatTensor=None, C: torch.FloatTensor=None):
input = self.conv_h_i(X, edge_index, edge_weight)
hidden = self.conv_h_h(H, edge_index, edge_weight)
H = torch.tanh(input + hidden)
return H, C
class RNN(torch.nn.Module):
"""
Base class for Recurrent Neural Networks (LSTM or GRU).
Initialization to this class contains all variables for variation of the model.
Consists of one of the above RNN architectures followed by an optional GNN on the final hidden state.
Parameters:
node_features: int - number of features per node
output: int - length of the output vector on each node
dim: int - number of features of embedding for each node
module: torch.nn.Module - to be used in the LSTM to calculate each gate
"""
def __init__(self, node_features=1, output=1, dim=32, module=GraphLinear, rnn=LSTM, gnn=WeightedSAGEConv, gnn_2=WeightedSAGEConv, rnn_depth=1, name="RNN", edge_count=423, skip_connection=True):
super(RNN, self).__init__()
self.dim = dim
self.rnn_depth = rnn_depth
self.name = name
self.skip_connection = skip_connection
# Ensure that matrix multiplication sizes match up based on whether GNNs and RNN are used
if gnn:
if skip_connection:
self.gnn = gnn(node_features, dim)
else:
self.gnn = gnn(node_features, dim * 2)
if rnn:
if skip_connection:
self.recurrent = rnn(dim, dim, module=module)
else:
self.recurrent = rnn(dim * 2, dim * 2, module=module)
else:
self.recurrent = None
else:
self.gnn = None
if rnn:
self.recurrent = rnn(node_features, dim, module=module)
else:
self.recurrent = None
if gnn_2:
if gnn:
self.gnn_2 = gnn_2(dim * 2, dim * 2)
else:
self.gnn_2 = gnn_2(dim + node_features, dim * 2)
else:
self.gnn_2 = None
self.lin1 = torch.nn.Linear(2 * dim, dim)
self.lin2 = torch.nn.Linear(dim, output)
self.act1 = torch.nn.ReLU()
self.act2 = torch.nn.ReLU()
def forward(self, data, h=None, c=None):
# Get data from snapshot
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
# First GNN Layer
if self.gnn:
x = self.gnn(x, edge_index, edge_attr)
x = F.relu(x)
# Initialize hidden and cell states if None
current_dim = self.dim
if not self.skip_connection:
current_dim = self.dim * 2
if h is None:
h = torch.zeros(x.shape[0], current_dim)
if c is None:
c = torch.zeros(x.shape[0], current_dim)
# RNN Layer
if self.recurrent:
for i in range(self.rnn_depth):
h, c = self.recurrent(x, edge_index, edge_attr, h, c)
# Skip connection from first GNN
if self.skip_connection:
x = torch.cat((x, h), 1)
else:
x = h
# Second GNN Layer
if self.gnn_2:
x = self.gnn_2(x, edge_index, edge_attr)
# Readout and activation layers
x = self.lin1(x)
# x = self.act1(x)
x = self.lin2(x)
# x = self.act2(x)
return x, h, c
class PGT_DCRNN(torch.nn.Module):
def __init__(self, node_features, dim=16):
super(PGT_DCRNN, self).__init__()
self.recurrent = DCRNN(node_features, dim, 1)
self.linear = torch.nn.Linear(dim, 1)
def forward(self, data, h=None, c=None):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
h = self.recurrent(x, edge_index, edge_attr, h)
x = F.relu(h)
x = self.linear(x)
return x, h, None
class PGT_GConvLSTM(torch.nn.Module):
def __init__(self, node_features, dim=16):
super(PGT_GConvLSTM, self).__init__()
self.recurrent = GConvLSTM(node_features, dim, 1)
self.linear = torch.nn.Linear(dim, 1)
def forward(self, data, h=None, c=None):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
edge_attr = torch.FloatTensor([attr[0] for attr in edge_attr])
h, c = self.recurrent(x, edge_index, edge_attr, h)
x = F.relu(h)
x = self.linear(x)
return x, h, c
class PGT_GConvGRU(torch.nn.Module):
def __init__(self, node_features, dim=16):
super(PGT_GConvGRU, self).__init__()
self.recurrent = GConvGRU(node_features, dim, 1)
self.linear = torch.nn.Linear(dim, 1)
def forward(self, data, h=None, c=None):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
edge_attr = torch.FloatTensor([attr[0] for attr in edge_attr])
h = self.recurrent(x, edge_index, edge_attr, h)
x = F.relu(h)
x = self.linear(x)
return x, h, None
class SimpleRNN(torch.nn.Module):
def __init__(self, node_features=1, output=1, dim=32, module=GraphLinear, rnn=LSTM, rnn_depth=1):
super(SimpleRNN, self).__init__()
self.dim = dim
self.rnn_depth = rnn_depth
self.recurrent = rnn(node_features, dim, module=module)
self.lin1 = torch.nn.Linear(dim, dim)
self.lin2 = torch.nn.Linear(dim, output)
self.act1 = torch.nn.ReLU()
def forward(self, data, h=None, c=None):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
for i in range(self.rnn_depth):
h, c = self.recurrent(x, edge_index, edge_attr, h, c)
x = self.lin1(h)
x = self.act1(x)
x = self.lin2(x)
return x, h, c