-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
extra example script with small model that can be trained on a single…
… cpu
- Loading branch information
Showing
1 changed file
with
81 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
|
||
from normflow import np, torch, Model | ||
from normflow import backward_sanitychecker | ||
from normflow.nn import DistConvertor_ | ||
from normflow.action import ScalarPhi4Action | ||
from normflow.prior import NormalPrior | ||
|
||
import os | ||
import sys | ||
|
||
def fit_func(model, **fit_kwargs): | ||
model.fit(**fit_kwargs) | ||
|
||
# ============================================================================= | ||
def main( | ||
m_sq=-1.2, lambd=0.5, knots_len=10, n_epochs=1000, batch_size=1024, | ||
lat_shape=1, # basically a zero dimensional problem | ||
nranks=1 | ||
): | ||
|
||
net_ = DistConvertor_(knots_len, symmetric=True) | ||
|
||
action_dict = dict(kappa=0, m_sq=m_sq, lambd=lambd) | ||
prior = NormalPrior(shape=lat_shape) | ||
action = ScalarPhi4Action(**action_dict) | ||
|
||
model = Model(net_=net_, prior=prior, action=action) | ||
|
||
|
||
print("number of model parameters =", model.net_.npar) | ||
snapshot_path = "/home/csic/cdi/gsr/torch-snapshots/T4_scl0dim_test.E2000.tar" | ||
#snapshot_path = None | ||
|
||
if nranks > 1: | ||
hyperparam = dict(lr=0.01, weight_decay=0., fused=True) | ||
else: | ||
hyperparam = dict(lr=0.01, weight_decay=0.) | ||
|
||
fit_kwargs = dict( | ||
n_epochs=n_epochs, | ||
save_every=None, | ||
batch_size=batch_size // nranks, | ||
hyperparam=hyperparam, | ||
checkpoint_dict=dict(print_stride=100, snapshot_path=snapshot_path) | ||
) | ||
|
||
if nranks > 1: | ||
model.device_handler.spawnprocesses(fit_func, nranks, **fit_kwargs) | ||
else: | ||
model.fit(**fit_kwargs) | ||
|
||
backward_sanitychecker(model) | ||
|
||
return model | ||
|
||
|
||
# ============================================================================= | ||
if __name__ == '__main__': | ||
from argparse import ArgumentParser | ||
parser = ArgumentParser() | ||
add = parser.add_argument | ||
|
||
add("--lat_shape", dest="lat_shape", type=str) | ||
add("--m_sq", dest="m_sq", type=float) | ||
add("--lambd", dest="lambd", type=float) | ||
add("--kappa", dest="kappa", type=float) | ||
add("--knots_len", dest="knots_len", type=int) | ||
add("--batch_size", dest="batch_size", type=int) | ||
add("--n_epochs", dest="n_epochs", type=int) | ||
add("--nranks", dest="nranks", type=int) | ||
|
||
args = vars(parser.parse_args()) | ||
none_keys = [key for key, value in args.items() if value is None] | ||
[args.pop(key) for key in none_keys] | ||
for key in ["lat_shape"]: | ||
if key in args.keys(): | ||
args[key] = eval(args[key]) | ||
|
||
main(**args) | ||
|
||
# print("usage: python3 scalar_model__zero_dim.py --m_sq -1.2 --lambd 0.5") |