-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-log.py
84 lines (66 loc) · 2.01 KB
/
run-log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import fle.flocking_env as flocking_env
import matplotlib.pyplot as plt
import time
import random
#env params
t = 60.0
hz = 1000
h=1/hz
n = (int)(t/h)
LIA = False
total_energy_j = 46000
total_distance_m = 870
distance_reward_per_m = 100/total_distance_m
energy_reward_per_j = -10/total_energy_j
crash_reward = -10
plt.plot([0],[0])
def run():
N = 9
env = flocking_env.raw_env(N = N,
h= 1/hz,
energy_reward=energy_reward_per_j,
forward_reward=distance_reward_per_m,
crash_reward=crash_reward,
LIA=True,
action_logging=True,)
#file input
action_file = "trial_22_-200_actions.csv"
file = open(action_file)
#agent actions:
actions = {str(i):[] for i in range(N)}
for line in file:
id, action, reward = line.split(",")
a = action.split(" ")
action = []
for c in a:
if c != '[' and c != '' and c != ' ' and c != ']':
if c[0] == '[':
action.append(c[1:])
elif c[-1] == ']':
action.append(c[:-1])
else:
action.append(c)
action = np.array(action)
action = action.astype(np.float)
actions[id].append(action)
env.reset()
done = False
obs, reward, done, info = env.last()
env.reset()
for agent in env.agent_iter():
obs, reward, done, info = env.last()
a = None
if not done:
if len(actions[env.agent_selection[-1]]) == 0:
a = [0.0, 0.5, 0.5, 0.5, 0.5]
else:
a = actions[env.agent_selection[-1]].pop(0)
env.step(a)
#log birds for unity rendering
env.log_birds(action_file+'_birds.csv')
env.log_actions(action_file+'_actions.csv')
env.plot_birds()
#env.plot_values()
if __name__ == "__main__":
run()