-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
63 lines (48 loc) · 1.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import math
import numpy as np
from sklearn.metrics import roc_auc_score
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
#print(target, pred, batch_size, correct, res)
return res
def save_model(model, optimizer, conf, epoch, save_file):
print('==> Saving...',file=conf.log_writter)
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
}
torch.save(state, save_file)
del state
def computeAUROC(dataGT, dataPRED, classCount=14):
outAUROC = []
datanpGT = dataGT.cpu().numpy()
datanpPRED = dataPRED.cpu().numpy()
for i in range(classCount):
outAUROC.append(roc_auc_score(datanpGT[:, i], datanpPRED[:, i]))
return outAUROC