-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
250 lines (204 loc) · 8.35 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3.7 -E
#
# Copyright (c) 2019, James C. McPherson. All Rights Reserved.
#
# Available under the terms of the MIT license:
#
# Permission is hereby granted, free of charge, to any
# person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the
# Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice
# shall be included in all copies or substantial portions of
# the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
# KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
# PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
# OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# This work draws in part upon the blog post
# http://blog.chapagain.com.np/python-nltk-twitter-sentiment-analysis-natural-language-processing-nlp/
# Thankyou to @chapagain for getting me started
# import datetime
import json
import re
import string
import sys
from flask import Flask, render_template, request
from nltk.corpus import (twitter_samples, stopwords)
from nltk.tokenize import TweetTokenizer
from nltk.stem import PorterStemmer
from nltk import NaiveBayesClassifier
from random import shuffle
from twython import Twython
from wtforms import Form, SelectField
__doc__ = """
This is a Flask application. The user chooses a hashtag from a
dropdown list of Australian politics-related tags, the application
retrieves tweets using Twitter's standard search API (which limits
results to 100) and we analyze the sentiment in those tweets. This
sentiment data is rendered with Chart.js and refreshed every 30
seconds. The latency is to avoid hitting Twitter's rate limit for
their standard API.
"""
usagestr = """
Run this with Flask.
"""
consumer_key = ""
consumer_secret = ""
access_token = ""
access_token_secret = ""
tweet_tokenizer = TweetTokenizer(preserve_case=False,
strip_handles=True, reduce_len=True)
stemmer = PorterStemmer()
stopwords_english = set(stopwords.words('english'))
# Happy Emoticons
emoticons_happy = set([
':-)', ':)', ';)', ':o)', ':]', ':3', ':c)', ':>', '=]', '8)', '=)', ':}',
':^)', ':-D', ':D', '8-D', '8D', 'x-D', 'xD', 'X-D', 'XD', '=-D', '=D',
'=-3', '=3', ':-))', ":'-)", ":')", ':*', ':^*', '>:P', ':-P', ':P', 'X-P',
'x-p', 'xp', 'XP', ':-p', ':p', '=p', ':-b', ':b', '>:)', '>;)', '>:-)',
'<3'
])
# Sad Emoticons
emoticons_sad = set([
':L', ':-/', '>:/', ':S', '>:[', ':@', ':-(', ':[', ':-||', '=L', ':<',
':-[', ':-<', '=\\', '=/', '>:(', ':(', '>.<', ":'-(", ":'(", ':\\', ':-c',
':c', ':{', '>:\\', ';('
])
# all emoticons (happy + sad)
emoticons = emoticons_happy.union(emoticons_sad)
stoppers = set.union(stopwords_english, emoticons, set(string.punctuation))
def clean_tweets(tweet):
# remove stock market tickers like $GE
tweet = re.sub(r'\$\w*', '', tweet)
# remove old style retweet text "RT"
tweet = re.sub(r'^RT[\s]+', '', tweet)
# remove hyperlinks
tweet = re.sub(r'https?:\/\/.*[\r\n]*', '', tweet)
# remove hashtags
# only removing the hash # sign from the word
tweet = re.sub(r'#', '', tweet)
# tokenize tweets
tokenizer = TweetTokenizer(preserve_case=False,
strip_handles=True, reduce_len=True)
tweet_tokens = tokenizer.tokenize(tweet)
tweets_clean = []
for word in tweet_tokens:
if word not in stoppers:
stem_word = stemmer.stem(word)
tweets_clean.append(stem_word)
return tweets_clean
# feature extractor function
def bag_of_words(tweet):
words = clean_tweets(tweet)
words_dictionary = dict([word, True] for word in words)
return words_dictionary
class ChooserForm(Form):
hashtag = SelectField("Hashtag to follow",
choices=[("auspol", "Australian Politics"),
("actpol", "Australian Capital Territory"),
("nswpol", "New South Wales"),
("ntpol", "Northern Territory"),
("qldpol", "Queensland"),
("sapol", "South Australia"),
("taspol", "Tasmania"),
("vicpol", "Victoria"),
("wapol", "Western Australia")])
def get_creds():
"""Read keys and secrets from the creds file"""
global consumer_key, consumer_secret, access_token, access_token_secret
app.config.from_pyfile("creds.conf")
consumer_key = app.config["CONSUMER_API_KEY"]
consumer_secret = app.config["CONSUMER_API_SECRET"]
access_token = app.config["ACCESS_TOKEN_KEY"]
access_token_secret = app.config["ACCESS_TOKEN_SECRET"]
if consumer_key == "" or consumer_secret == "":
print("Consumer key/secret cannot be empty")
sys.exit(1)
if access_token == "" or access_token_secret == "":
print("Access token/secret cannot be empty")
sys.exit(1)
# boilerplate and basic setup
app = Flask("au-pol-sentiment")
get_creds()
twitter = Twython(consumer_key, consumer_secret,
access_token, access_token_secret)
# Set up the positive and negative sentiment sets
# positive tweets feature set
pos_tweets_set = []
for tweet in twitter_samples.strings('positive_tweets.json'):
pos_tweets_set.append((bag_of_words(tweet), 'pos'))
# negative tweets feature set
neg_tweets_set = []
for tweet in twitter_samples.strings('negative_tweets.json'):
neg_tweets_set.append((bag_of_words(tweet), 'neg'))
# Randomize, a little
shuffle(pos_tweets_set)
shuffle(neg_tweets_set)
# start training
test_set = pos_tweets_set[:1000] + neg_tweets_set[:1000]
train_set = pos_tweets_set[1000:] + neg_tweets_set[1000:]
classifier = NaiveBayesClassifier.train(train_set)
def update(inhashtag, lastid):
hashtag = "#" + inhashtag
results = {}
data = list()
data.append('data1')
labels = list()
labels.append('data1')
# Note: the free search API gives us a maximum of 100 results
tw = twitter.search(q=hashtag, result_type="recent", since_id=lastid)
if len(tw["statuses"]) > 0:
lastid = tw["statuses"][-1]["id"]
results["lastid"] = lastid
for tweet in tw["statuses"]:
url = "https://twitter.com/" + tweet["user"]["screen_name"]
url += "/status/" + str(tweet["id"])
probres = classifier.prob_classify(bag_of_words(tweet["text"]))
# Create an ISO-like timestamp, without UTC offset.
# We're not currently using this in the rendered page.
# tstamp = datetime.datetime.strptime(
# tweet["created_at"],
# "%a %b %d %H:%M:%S %z %Y").isoformat()[0:-6]
labels.append("""{url}""".format(url=url))
data.append(str(int(100 * probres.prob("pos"))))
else:
print("No data returned in the last 30 seconds")
results["chartdata"] = data
results["labels"] = labels
results["lastid"] = lastid
return results
@app.route("/sentiment", methods=("POST", "GET"))
def sentiment():
if request.method == "GET":
hashtag = request.args["hashtag"]
lastid = request.args["lastid"]
else:
formdict = request.form.to_dict()
hashtag = formdict["hashtag"]
if "lastid" in formdict:
lastid = formdict["lastid"]
else:
lastid = ""
sentiments = update(hashtag, lastid)
if request.method == "GET":
return json.dumps(sentiments)
return render_template("sentiment.html",
form=ChooserForm(),
hashtag=hashtag,
lastid=sentiments["lastid"],
chartdata=json.dumps(sentiments["chartdata"]),
labels=",".join(sentiments["labels"]))
@app.route("/")
def index():
return render_template("index.html", form=ChooserForm())