title | ms.custom | ms.date | ms.reviewer | ms.suite | ms.technology | ms.tgt_pltfrm | ms.topic | apiname | apilocation | apitype | f1_keywords | dev_langs | helpviewer_keywords | ms.assetid | caps.latest.revision | author | ms.author | manager | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bessel Functions: _j0, _j1, _jn, _y0, _y1, _yn | Microsoft Docs |
11/04/2016 |
|
article |
|
|
DLLExport |
|
|
|
a21a8bf1-df9d-4ba0-a8c2-e7ef71921d96 |
14 |
corob-msft |
corob |
ghogen |
Computes the Bessel function of the first or second kind, of orders 0, 1, or n. The Bessel functions are commonly used in the mathematics of electromagnetic wave theory.
double _j0(
double x
);
double _j1(
double x
);
double _jn(
int n,
double x
);
double _y0(
double x
);
double _y1(
double x
);
double _yn(
int n,
double x
);
x
Floating-point value.
n
Integer order of Bessel function.
Each of these routines returns a Bessel function of x
. If x
is negative in the _y0
, _y1
, or _yn
functions, the routine sets errno
to EDOM
, prints a _DOMAIN
error message to stderr
, and returns _HUGE_VAL
. You can modify error handling by using _matherr
.
The _j0
, _j1
, and _jn
routines return Bessel functions of the first kind: orders 0, 1, and n, respectively.
Input | SEH Exception | Matherr Exception |
---|---|---|
± QNAN ,IND |
INVALID |
_DOMAIN |
The _y0
, _y1
, and _yn
routines return Bessel functions of the second kind: orders 0, 1, and n, respectively.
Input | SEH Exception | Matherr Exception |
---|---|---|
± QNAN ,IND |
INVALID |
_DOMAIN |
± 0 | ZERODIVIDE |
_SING |
|x|<0.0 | INVALID |
_DOMAIN |
Routine | Required header |
---|---|
_j0 , _j1 , _jn , _y0 , _y1 , _yn |
<cmath> (C++), <math.h> (C, C++) |
For additional compatibility information, see Compatibility in the Introduction.
// crt_bessel1.c
#include <math.h>
#include <stdio.h>
int main( void )
{
double x = 2.387;
int n = 3, c;
printf( "Bessel functions for x = %f:\n", x );
printf( " Kind Order Function Result\n\n" );
printf( " First 0 _j0( x ) %f\n", _j0( x ) );
printf( " First 1 _j1( x ) %f\n", _j1( x ) );
for( c = 2; c < 5; c++ )
printf( " First %d _jn( %d, x ) %f\n", c, c, _jn( c, x ) );
printf( " Second 0 _y0( x ) %f\n", _y0( x ) );
printf( " Second 1 _y1( x ) %f\n", _y1( x ) );
for( c = 2; c < 5; c++ )
printf( " Second %d _yn( %d, x ) %f\n", c, c, _yn( c, x ) );
}
Bessel functions for x = 2.387000:
Kind Order Function Result
First 0 _j0( x ) 0.009288
First 1 _j1( x ) 0.522941
First 2 _jn( 2, x ) 0.428870
First 3 _jn( 3, x ) 0.195734
First 4 _jn( 4, x ) 0.063131
Second 0 _y0( x ) 0.511681
Second 1 _y1( x ) 0.094374
Second 2 _yn( 2, x ) -0.432608
Second 3 _yn( 3, x ) -0.819314
Second 4 _yn( 4, x ) -1.626833