-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathsample.py
89 lines (79 loc) · 3.9 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy
import theano
from theano import tensor
from blocks import roles
from blocks.model import Model
from blocks.serialization import load_parameters
from blocks.filter import VariableFilter
from utils import get_metadata, MainLoop
from config import config
from model import nn_fprop
import argparse
import sys
def sample(x_curr, states_values, fprop, temperature=1.0):
'''
Propagate x_curr sequence and sample next element according to
temperature sampling.
Return: sampled element and a list of the hidden activations produced by fprop.
'''
activations = fprop(x_curr, *states_values)
probs = activations.pop().astype('float64')
if numpy.random.binomial(1, temperature) == 1:
probs = probs / probs.sum()
sample = numpy.random.multinomial(1, probs).nonzero()[0][0]
else:
sample = probs.argmax()
return sample, activations
if __name__ == '__main__':
# Load config parameters
locals().update(config)
parser = argparse.ArgumentParser(
description='Sample from a character-level language model',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-model', default=save_path,
help='model checkpoint to use for sampling')
parser.add_argument('-primetext', default=None,
help='used as a prompt to "seed" the state of the RNN using a given sequence, before we sample.')
parser.add_argument('-length', default=1000,
type=int, help='number of characters to sample')
parser.add_argument('-seed', default=None,
type=int, help='seed for random number generator')
parser.add_argument('-temperature', type=float,
default=1.0, help='temperature of sampling')
args = parser.parse_args()
# Define primetext
ix_to_char, char_to_ix, vocab_size = get_metadata(hdf5_file)
if not args.primetext or len(args.primetext) == 0:
args.primetext = ix_to_char[numpy.random.randint(vocab_size)]
primetext = ''.join([ch for ch in args.primetext if ch in char_to_ix.keys()])
if len(primetext) == 0:
raise Exception('primetext characters are not in the vocabulary')
x_curr = numpy.expand_dims(
numpy.array([char_to_ix[ch] for ch in primetext], dtype='uint8'), axis=1)
print('Loading model from {0}...'.format(args.model))
x = tensor.matrix('features', dtype='uint8')
y = tensor.matrix('targets', dtype='uint8')
y_hat, cost, cells = nn_fprop(x, y, vocab_size, hidden_size, num_layers, model)
main_loop = MainLoop(algorithm=None, data_stream=None, model=Model(cost))
with open(args.model) as f:
main_loop.model.set_parameter_values(load_parameters(f))
bin_model = main_loop.model
activations = []
initial_states = []
for i in range(num_layers):
brick = [b for b in bin_model.get_top_bricks() if b.name==model+str(i)][0]
activations.extend(VariableFilter(theano_name=brick.name+'_apply_states')(bin_model.variables))
activations.extend(VariableFilter(theano_name=brick.name+'_apply_cells')(cells))
initial_states.extend(VariableFilter(roles=[roles.INITIAL_STATE])(brick.parameters))
#take activations of last element
activations = [act[-1].flatten() for act in activations]
states_as_params = [tensor.vector(dtype=initial.dtype) for initial in initial_states]
#Get prob. distribution of the last element in the last seq of the batch
fprop = theano.function([x] + states_as_params, activations + [y_hat[-1, -1, :]], givens=zip(initial_states, states_as_params))
states_values = [initial.get_value() for initial in initial_states]
sys.stdout.write('Starting sampling\n' + primetext)
for _ in range(args.length):
idx, states_values = sample(x_curr, states_values, fprop, args.temperature)
sys.stdout.write(ix_to_char[idx])
x_curr = [[idx]]
sys.stdout.write('\n')