Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can't get connect four example to work #213

Open
ghost opened this issue Mar 28, 2024 · 0 comments
Open

Can't get connect four example to work #213

ghost opened this issue Mar 28, 2024 · 0 comments

Comments

@ghost
Copy link

ghost commented Mar 28, 2024

I do as the readme says and clone/initialize the AlphaZero project, then try to run the connect-four line, I get this error no matter what I do. I've tried different versions of CUDA, other versions of Julia, it just doesn't work.

MethodError: no method matching length(::Nothing)

Closest candidates are:
  length(::Base.AsyncGenerator)
   @ Base asyncmap.jl:390
  length(::RegexMatch)
   @ Base regex.jl:285
  length(::Distributions.VonMisesFisherSampler)
   @ Distributions C:\Users\KOOLD\.julia\packages\Distributions\UaWBm\src\samplers\vonmisesfisher.jl:20
  ...

Stacktrace:
  [1] #s597#122
    @ C:\Users\KOOLD\.julia\packages\GPUCompiler\S3TWf\src\cache.jl:18 [inlined]
  [2] var"#s597#122"(f::Any, tt::Any, ::Any, job::Any)
    @ GPUCompiler .\none:0
  [3] (::Core.GeneratedFunctionStub)(::UInt64, ::LineNumberNode, ::Any, ::Vararg{Any})
    @ Core .\boot.jl:602
  [4] cached_compilation(cache::Dict{UInt64, Any}, job::GPUCompiler.CompilerJob, compiler::typeof(CUDA.cufunction_compile), linker::typeof(CUDA.cufunction_link))
    @ GPUCompiler C:\Users\KOOLD\.julia\packages\GPUCompiler\S3TWf\src\cache.jl:71
  [5] cufunction(f::GPUArrays.var"#broadcast_kernel#26", tt::Type{Tuple{CUDA.CuKernelContext, CUDA.CuDeviceArray{Float32, 4, 1}, Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{4}, NTuple{4, Base.OneTo{Int64}}, typeof(identity), Tuple{Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{4}, Nothing, typeof(+), Tuple{Base.Broadcast.Extruded{CUDA.CuDeviceArray{Float32, 4, 1}, NTuple{4, Bool}, NTuple{4, Int64}}, Base.Broadcast.Extruded{CUDA.CuDeviceArray{Float32, 4, 1}, NTuple{4, Bool}, NTuple{4, Int64}}}}}}, Int64}}; name::Nothing, always_inline::Bool, kwargs::@Kwargs{})
    @ CUDA C:\Users\KOOLD\.julia\packages\CUDA\BbliS\src\compiler\execution.jl:300
  [6] cufunction
    @ C:\Users\KOOLD\.julia\packages\CUDA\BbliS\src\compiler\execution.jl:293 [inlined]
  [7] macro expansion
    @ C:\Users\KOOLD\.julia\packages\CUDA\BbliS\src\compiler\execution.jl:102 [inlined]
  [8] #launch_heuristic#252
    @ C:\Users\KOOLD\.julia\packages\CUDA\BbliS\src\gpuarrays.jl:17 [inlined]
  [9] launch_heuristic
    @ C:\Users\KOOLD\.julia\packages\CUDA\BbliS\src\gpuarrays.jl:15 [inlined]
 [10] _copyto!
    @ C:\Users\KOOLD\.julia\packages\GPUArrays\5XhED\src\host\broadcast.jl:65 [inlined]
 [11] copyto!
    @ C:\Users\KOOLD\.julia\packages\GPUArrays\5XhED\src\host\broadcast.jl:46 [inlined]
 [12] copy
    @ C:\Users\KOOLD\.julia\packages\GPUArrays\5XhED\src\host\broadcast.jl:37 [inlined]
 [13] materialize
    @ .\broadcast.jl:903 [inlined]
 [14] (::Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}})(x::CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer})
    @ Flux C:\Users\KOOLD\.julia\packages\Flux\uCLgc\src\layers\conv.jl:202
 [15] macro expansion
    @ C:\Users\KOOLD\.julia\packages\Flux\uCLgc\src\layers\basic.jl:53 [inlined]
 [16] _applychain(layers::Tuple{Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.BatchNorm{typeof(NNlib.relu), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Vararg{Flux.Chain{Tuple{Flux.SkipConnection{Flux.Chain{Tuple{Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.BatchNorm{typeof(NNlib.relu), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.BatchNorm{typeof(identity), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}}}, typeof(+)}, AlphaZero.FluxLib.var"#15#16"}}, 5}}, x::CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer})
    @ Flux C:\Users\KOOLD\.julia\packages\Flux\uCLgc\src\layers\basic.jl:53
 [17] (::Flux.Chain{Tuple{Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.BatchNorm{typeof(NNlib.relu), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Vararg{Flux.Chain{Tuple{Flux.SkipConnection{Flux.Chain{Tuple{Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.BatchNorm{typeof(NNlib.relu), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.Conv{2, 2, typeof(identity), CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, Flux.BatchNorm{typeof(identity), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}}}, typeof(+)}, AlphaZero.FluxLib.var"#15#16"}}, 5}}})(x::CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer})
    @ Flux C:\Users\KOOLD\.julia\packages\Flux\uCLgc\src\layers\basic.jl:51
 [18] forward(nn::ResNet, state::CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer})
    @ AlphaZero.FluxLib C:\Users\KOOLD\AlphaZero.jl\src\networks\flux.jl:142
 [19] forward_normalized(nn::ResNet, state::CUDA.CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}, actions_mask::CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer})
    @ AlphaZero.Network C:\Users\KOOLD\AlphaZero.jl\src\networks\network.jl:264
 [20] evaluate_batch(nn::ResNet, batch::Vector{@NamedTuple{board::StaticArraysCore.SMatrix{7, 6, UInt8, 42}, curplayer::UInt8}})
    @ AlphaZero.Network C:\Users\KOOLD\AlphaZero.jl\src\networks\network.jl:312
 [21] fill_and_evaluate(net::ResNet, batch::Vector{@NamedTuple{board::StaticArraysCore.SMatrix{7, 6, UInt8, 42}, curplayer::UInt8}}; batch_size::Int64, fill_batches::Bool)
    @ AlphaZero C:\Users\KOOLD\AlphaZero.jl\src\simulations.jl:32
 [22] fill_and_evaluate
    @ C:\Users\KOOLD\AlphaZero.jl\src\simulations.jl:23 [inlined]
 [23] #36
    @ C:\Users\KOOLD\AlphaZero.jl\src\simulations.jl:54 [inlined]
 [24] #4
    @ C:\Users\KOOLD\AlphaZero.jl\src\batchifier.jl:71 [inlined]
 [25] log_event(f::AlphaZero.Batchifier.var"#4#7"{Vector{@NamedTuple{board::StaticArraysCore.SMatrix{7, 6, UInt8, 42}, curplayer::UInt8}}, AlphaZero.var"#36#37"{Int64, Bool, ResNet}}; name::String, cat::String, pid::Int64, tid::Int64)
    @ AlphaZero.ProfUtils C:\Users\KOOLD\AlphaZero.jl\src\prof_utils.jl:40
 [26] macro expansion
    @ C:\Users\KOOLD\AlphaZero.jl\src\batchifier.jl:68 [inlined]
 [27] macro expansion
    @ C:\Users\KOOLD\AlphaZero.jl\src\util.jl:21 [inlined]
 [28] (::AlphaZero.Batchifier.var"#2#5"{Int64, AlphaZero.var"#36#37"{Int64, Bool, ResNet}, Channel{Any}})()
    @ AlphaZero.Batchifier C:\Users\KOOLD\.julia\packages\ThreadPools\ANo2I\src\macros.jl:261
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

0 participants