-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathPluto_beamformer_TimeDelay_2p3GHz_youtube.py
195 lines (172 loc) · 8.52 KB
/
Pluto_beamformer_TimeDelay_2p3GHz_youtube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
Jon Kraft, Jan 21 2023
https://github.com/jonkraft/Pluto_Beamformer
video walkthrough of this at: https://www.youtube.com/@jonkraft
"""
# Copyright (C) 2020 Analog Devices, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# - Neither the name of Analog Devices, Inc. nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
# - The use of this software may or may not infringe the patent rights
# of one or more patent holders. This license does not release you
# from the requirement that you obtain separate licenses from these
# patent holders to use this software.
# - Use of the software either in source or binary form, must be run
# on or directly connected to an Analog Devices Inc. component.
#
# THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED.
#
# IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
# RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import adi
import matplotlib.pyplot as plt
import numpy as np
'''Setup'''
samp_rate = 30e6 # must be <=30.72 MHz if both channels are enabled
NumSamples = 2**12
f_carrier = 2.3e9
rx_lo = f_carrier
rx_mode = "manual" # can be "manual" or "slow_attack"
rx_gain0 = 20
rx_gain1 = 20
tx_lo = rx_lo
tx_gain = -3
fc0 = int(200e3)
c = 299792458 # speed of light in m/s
time_cal = -80 # time offset (in ps) at boresight
num_scans = 500
invert_Rx = -1 # set to either -1 or 1. This is to compensate for a 180 deg phase shift on the LO divider of Pluto
''' Set distance between Rx antennas '''
d_wavelength = 0.5 # distance between elements as a fraction of wavelength. This is normally 0.5
wavelength = c/f_carrier # wavelength of the RF carrier
d = d_wavelength*wavelength # distance between elements in meters
time_max = d / c * 1E12 # max time (in ps) needed to steer from 0 to 90 deg
print("Set distance between Rx Antennas to ", int(d*1000), "mm")
'''Create Radio'''
sdr = adi.ad9361(uri='ip:192.168.2.1')
'''Configure properties for the Radio'''
sdr.rx_enabled_channels = [0, 1]
sdr.sample_rate = int(samp_rate)
sdr.rx_rf_bandwidth = int(samp_rate)
sdr.rx_lo = int(rx_lo)
sdr.gain_control_mode = rx_mode
sdr.rx_hardwaregain_chan0 = int(rx_gain0)
sdr.rx_hardwaregain_chan1 = int(rx_gain1)
sdr.rx_buffer_size = int(NumSamples)
sdr._rxadc.set_kernel_buffers_count(1) # set buffers to 1 (instead of the default 4) to avoid stale data on Pluto
sdr.tx_rf_bandwidth = int(samp_rate)
sdr.tx_lo = int(tx_lo)
sdr.tx_cyclic_buffer = True
sdr.tx_hardwaregain_chan0 = int(tx_gain)
sdr.tx_hardwaregain_chan1 = int(-88)
sdr.tx_buffer_size = int(2**18)
'''Program Tx and Send Data'''
fs = int(sdr.sample_rate)
N = 2**16
ts = 1 / float(fs)
t = np.arange(0, N * ts, ts)
i0 = np.cos(2 * np.pi * t * fc0) * 2 ** 14
q0 = np.sin(2 * np.pi * t * fc0) * 2 ** 14
iq0 = i0 + 1j * q0
sdr.tx([iq0,iq0]) # Send Tx data.
# Assign frequency bins and "zoom in" to the fc0 signal on those frequency bins
xf = np.fft.fftfreq(NumSamples, ts)
xf = np.fft.fftshift(xf)/1e6
signal_start = 0
signal_end = int(len(xf)-1)
def dbfs(raw_data):
# function to convert IQ samples to FFT plot, scaled in dBFS
NumSamples = len(raw_data)
win = np.hamming(NumSamples)
y = raw_data * win
s_fft = np.fft.fft(y) / np.sum(win)
s_shift = np.fft.fftshift(s_fft)
s_dbfs = 20*np.log10(np.abs(s_shift)/(2**11)) # Pluto is a signed 12 bit ADC, so use 2^11 to convert to dBFS
return s_dbfs
def calcTheta(delay_type, delay, freq):
# calculates the steering angle for a given time or phase delay
# if delay_type = "phase", then delay must be in degrees
# if delay_type = "time", then delay must be in ps
if delay_type == "phase":
# steering angle is theta = arcsin(c*deltaphase/(2*pi*f*d)
phase_rad = np.deg2rad(delay)
arcsin_arg = phase_rad*3E8/(2*np.pi*freq*d)
else:
# steering angle is theta = arcsin(time_delay * c / d)
arcsin_arg = delay * 1E-12 * c / d
arcsin_arg = max(min(1, arcsin_arg), -1) # arcsin argument must be between 1 and -1, or numpy will throw a warning
calc_theta = np.rad2deg(np.arcsin(arcsin_arg))
return calc_theta
def time_delayer(data, do_phase_delay, do_time_delay, delay_time_ps, freq, samp_rate):
delayed_data = data
if do_phase_delay == True:
delayed_data = delayed_data * np.exp(1j*2*np.pi*freq*delay_time_ps*1E-12)
if do_time_delay == True:
# Create and apply fractional delay filter
# Dr. Marc Lichtman https://pysdr.org/content/sync.html#adding-a-delay
delay = np.int64(samp_rate) * delay_time_ps * 1E-12 # fractional delay, in samples
N = 21 # number of taps
n = np.arange(-N//2, N//2) # ...-3,-2,-1,0,1,2,3...
h = np.sinc(n - delay) # calc filter taps
h *= np.hamming(N) # window the filter to make sure it decays to 0 on both sides
h /= np.sum(h) # normalize to get unity gain, we don't want to change the amplitude/power
delayed_data = np.convolve(delayed_data, h) # apply filter
delayed_data = delayed_data[int(N/2+1):-int(N/2-1)] # drop the first and last N/2 results
return delayed_data
'''Collect Data'''
for i in range(20):
# let Pluto run for a bit, to do all its calibrations, then get a buffer
data = sdr.rx()
delay_times = np.arange(-time_max, time_max, time_max/200) # time delay in ps
steer_angles = []
for time_delay in delay_times:
steer_angles.append(calcTheta("time", time_delay, f_carrier))
for i in range(num_scans):
data = sdr.rx()
Rx_0=data[0]
Rx_1=data[1]
peak_sum = []
peak_sum_time = []
for time_delay in delay_times:
delayed_Rx_1 = time_delayer(Rx_1, True, False, time_delay+time_cal, f_carrier, samp_rate) # data, do_phase_delay, do_time_delay, delay_time_ps, freq, samp_rate
delayed_sum = dbfs(Rx_0 + delayed_Rx_1 * np.sign(invert_Rx))
peak_sum.append(np.max(delayed_sum[signal_start:signal_end])) # this is the data for if we are only doing phase shifting
delayed_Rx_1 = time_delayer(Rx_1, True, True, time_delay+time_cal, f_carrier, samp_rate) # data, do_phase_delay, do_time_delay, delay_time_ps, freq, samp_rate
delayed_sum = dbfs(Rx_0 + delayed_Rx_1 * np.sign(invert_Rx))
peak_sum_time.append(np.max(delayed_sum[signal_start:signal_end])) # this is the data for if we are only doing time shifting
peak_dbfs = np.max(peak_sum)
peak_delay_index = np.where(peak_sum==peak_dbfs)
peak_delay = delay_times[peak_delay_index[0][0]]
peak_dbfs_time = np.max(peak_sum_time)
peak_delay_time_index = np.where(peak_sum_time==peak_dbfs_time)
peak_delay_time = delay_times[peak_delay_time_index[0][0]]
steer_angle = int(calcTheta("time", peak_delay, f_carrier))
steer_angle_time = int(calcTheta("time", peak_delay_time, f_carrier))
plt.plot(steer_angles, peak_sum)
plt.plot(steer_angles, peak_sum_time)
plt.axvline(x=steer_angle, color='b', linestyle=':')
plt.axvline(x=steer_angle_time, color='orange', linestyle=':')
plt.ylim(top=0, bottom=-40)
plt.xlabel("steering angle [deg]")
plt.ylabel("Rx0 + Rx1 [dBfs]")
plt.draw()
plt.show()
sdr.tx_destroy_buffer()
if i>40: print('\a') # for a long capture, beep when the script is done