-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjoAD.py
231 lines (167 loc) · 4.61 KB
/
joAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import numpy as np
'''
=========================================
MyVar
=========================================
'''
class MyVar():
def __init__(self, val):
self.val = val
self.grad = None
self.creator = None
def Set(self, val):
self.val = val
def Evaluate(self):
if self.creator!=None:
self.val = self.creator.Evaluate()
return self.val
def __repr__(self):
if self.creator==None:
return str(self.val)
else:
return self.creator.__repr__()
def SetCreator(self, op):
self.creator = op
def ZeroGrad(self):
self.grad = 0.
if self.creator!=None:
self.creator.ZeroGrad()
def Backward(self, s=1.):
self.grad += s
if self.creator!=None:
self.creator.Backward(s)
def __call__(self):
return self.val
'''
=========================================
Wrapper Functions
=========================================
'''
def Mul(a, b):
op = MyMul([a, b])
c = MyVar(op.Evaluate())
c.SetCreator(op)
return c
def Plus(a, b):
op = MyPlus([a, b])
c = MyVar(op.Evaluate())
c.SetCreator(op)
return c
def Recip(a):
op = MyRecip([a])
c = MyVar(op.Evaluate())
c.SetCreator(op)
return c
def Power(a, power=2):
op = MyPower([a], power=power)
c = MyVar(op.Evaluate())
c.SetCreator(op)
return c
def Log(a):
op = MyLog([a])
c = MyVar(op.Evaluate())
c.SetCreator(op)
return c
'''
=========================================
MyOp
=========================================
'''
class MyOp():
def __init__(self):
self.args = []
def Evaluate(self):
raise NotImplementedError
def ZeroGrad(self):
for a in self.args:
a.ZeroGrad()
def Backward(self, s=1.):
raise NotImplementedError
'''
=========================================
Operation Implementations
=========================================
'''
class MyLog(MyOp):
def __init__(self, args):
super().__init__()
self.args = args
def Evaluate(self):
val = np.log(self.args[0].Evaluate())
return val
def __repr__(self):
return 'log('+self.args[0].__repr__()+')'
def Backward(self, s=1.):
'''
deriv = mm.Backward(s=1.)
Multiplies s by the gradient of this operator.
'''
deriv = 1./self.args[0].val
self.args[0].Backward(s*deriv)
class MyPower(MyOp):
def __init__(self, args, power=2):
super().__init__()
self.args = args
self.power = power
def Evaluate(self):
val = self.args[0].Evaluate()**self.power
return val
def __repr__(self):
return '('+self.args[0].__repr__()+')**'+str(self.power)
def Backward(self, s=1.):
'''
deriv = mm.Backward(s=1.)
Multiplies s by the gradient of this operator.
'''
deriv = self.power*self.args[0].val**(self.power-1)
self.args[0].Backward(s*deriv)
class MyPlus(MyOp):
def __init__(self, args):
super().__init__()
self.args = args
def Evaluate(self):
val = self.args[0].Evaluate() + self.args[1].Evaluate()
return val
def __repr__(self):
return '('+self.args[0].__repr__()+'+'+str(self.args[1].__repr__())+')'
def Backward(self, s=1.):
'''
deriv = mm.Backward(s=1.)
Multiplies s by the gradient of this operator.
'''
self.args[0].Backward(s)
self.args[1].Backward(s)
class MyRecip(MyOp):
def __init__(self, args):
super().__init__()
self.args = args
def Evaluate(self):
val = 1./self.args[0].Evaluate()
return val
def __repr__(self):
return '(1/'+self.args[0].__repr__()+')'
def Backward(self, s=1.):
'''
deriv = mm.Backward(s=1.)
Multiplies s by the gradient of this operator.
'''
deriv = -1./self.args[0].val**2
self.args[0].Backward(s*deriv)
class MyMul(MyOp):
def __init__(self, args):
super().__init__()
self.args = args
def Evaluate(self):
val = self.args[0].Evaluate() * self.args[1].Evaluate()
return val
def __repr__(self):
return self.args[0].__repr__()+'*'+str(self.args[1].__repr__())
def Backward(self, s=1.):
'''
deriv = mm.Backward(s=1.)
Multiplies s by the gradient of this operator.
'''
x_deriv = self.args[1].val
y_deriv = self.args[0].val
self.args[0].Backward(s*x_deriv)
self.args[1].Backward(s*y_deriv)