-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_train.py
191 lines (164 loc) · 8.07 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import datetime
import time
import wandb
import numpy as np
from functools import partial
from pathlib import Path
import torch
import torch.optim as optim
from modeling.mutate_everything import MutateEverything
from engine_train import train_one_epoch, evaluate
from data import SeqDetDatatset, protein_collate_fn
import misc
def get_args_parser():
parser = argparse.ArgumentParser('Train Sequence Detector')
parser.add_argument('--seed', default=0, type=int)
# model params
parser.add_argument('--aa_expand', default='backbone', help='scratch|backbone')
parser.add_argument('--single_dec', default='naive', help='naive')
parser.add_argument('--multi_dec', default='epistasis', help='additive|epistasis')
parser.add_argument('--head_dim', type=int, default=128)
parser.add_argument('--backbone', default='esm2_t33_650M_UR50D', help='af|esm2_t33_650M_UR50D')
parser.add_argument('--finetune_backbone', type=str, default='models/finetuning_ptm_2.pt')
parser.add_argument('--freeze_at', default=0, help='freeze backbone up to layer X', type=int)
# af params
parser.add_argument('--n_msa_seqs', type=int, default=128)
parser.add_argument('--n_extra_msa_seqs', type=int, default=1024)
parser.add_argument('--af_extract_feat', type=str, default='both',
help='which features to use from AF: both|evo|struct')
# data params
parser.add_argument('--data_path', type=str, default='data/cdna_train.csv')
parser.add_argument('--eval_data_paths', type=str,
default='data/cdna2_test.csv,data/ptmul.csv,data/s669.csv',
help='comma separated string of data paths to evaluate')
parser.add_argument('--max_context_length', type=int, default=2000,
help='max length of protein sequence')
parser.add_argument('--num_workers', default=10, type=int)
# train params
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--min_lr', type=float, default=1e-9)
parser.add_argument('--weight_decay', type=float, default=0.5)
parser.add_argument('--warmup_epochs', type=int, default=10)
# loss params
parser.add_argument('--lambda_single', type=float, default=0.1)
parser.add_argument('--lambda_double', type=float, default=1.)
parser.add_argument('--double_subsample_destabilizing_ratio', type=float, default=8)
parser.add_argument('--lambda_pos', type=float, default=4)
# eval params
parser.add_argument('--eval', action='store_true')
parser.add_argument('--dist_eval', action='store_true')
parser.add_argument('--test', action='store_true',
help='when testing, please use data_path NOT eval_data_paths')
# resume params
parser.add_argument('--finetune', default='', type=str)
parser.add_argument('--resume', default='', type=str)
parser.add_argument('--start_epoch', type=int, default=0)
# logging params
parser.add_argument('--output_dir', type=Path, default='logs/mutate_everything')
parser.add_argument('--eval_period', type=int, default=10)
parser.add_argument('--save_period', type=int, default=1000)
parser.add_argument('--disable_wandb', action='store_true')
# distributed training parameters
parser.add_argument('--device', default='cuda')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
if not args.disable_wandb and misc.is_main_process():
run_name = args.output_dir.name
wandb.init(project='mutate_everything', name=run_name, config=args, dir=args.output_dir)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
## prepare model
model = MutateEverything(args)
alphabet = model.backbone.get_alphabet()
n_params = sum(p.numel() for p in model.parameters())
n_params_grad = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(model)
print(f'Training {n_params_grad} of {n_params} parameters')
## prepare DDP
model.to(args.device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
## prepare optimizer
param_groups = misc.param_groups_weight_decay(model, args.weight_decay)
optimizer = optim.AdamW(param_groups, lr=args.lr, weight_decay=args.weight_decay)
misc.load_model(args, model_without_ddp, optimizer, None)
## prepare test data
dls_test = []
for eval_data_path in args.eval_data_paths.split(','):
ds_test = SeqDetDatatset(eval_data_path, args, train=False)
collate_fn = partial(protein_collate_fn, alphabet=alphabet, args=args)
if args.distributed and args.dist_eval:
sampler_test = torch.utils.data.DistributedSampler(ds_test, num_replicas=num_tasks, rank=global_rank, shuffle=True)
else:
sampler_test = torch.utils.data.SequentialSampler(ds_test)
dl_test = torch.utils.data.DataLoader(ds_test, sampler=sampler_test, batch_size=1, collate_fn=collate_fn)
dls_test.append(dl_test)
if args.eval:
metrics = {}
for dl_test in dls_test:
metrics.update(evaluate(model, dl_test, device, args))
if misc.is_main_process():
metrics['copypasta'] = ',,'.join([metrics[f'{dl.dataset.name}_copypasta'] for dl in dls_test])
print(metrics)
if not args.disable_wandb and misc.is_main_process():
wandb.log({'copypasta': metrics['copypasta']})
wandb.finish()
exit()
## prepare train data
ds_train = SeqDetDatatset(args.data_path, args, train=True)
collate_fn = partial(protein_collate_fn, alphabet=alphabet, args=args)
if args.distributed:
sampler_train = torch.utils.data.DistributedSampler(
ds_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(ds_train)
dl_train = torch.utils.data.DataLoader(ds_train, sampler=sampler_train, batch_size=args.batch_size, collate_fn=collate_fn)
print(f"Start training for {args.epochs} epochs, saving to {args.output_dir}")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
dl_train.sampler.set_epoch(epoch)
train_one_epoch(model, dl_train, optimizer, device, epoch, args)
if epoch % args.eval_period == args.eval_period - 1:
for dl_test in dls_test:
evaluate(model, dl_test, device, args)
if epoch % args.save_period == args.save_period - 1:
ckpt_path = misc.save_model(args, epoch, model, model_without_ddp, optimizer, None)
print(f'Saved checkpoint to {ckpt_path}')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
metrics = {}
for dl_test in dls_test:
metrics.update(evaluate(model, dl_test, device, args))
if misc.is_main_process():
metrics['copypasta'] = ',,'.join([metrics[f'{dl.dataset.name}_copypasta'] for dl in dls_test])
print(metrics)
if not args.disable_wandb and misc.is_main_process():
wandb.log({'copypasta': metrics['copypasta']})
wandb.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)