-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensity_gen.py
106 lines (82 loc) · 3.5 KB
/
density_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Taken from https://www.kaggle.com/tthien/shanghaitech-with-people-density-map
import numpy as np
import os
from tensorflow.keras.preprocessing import image
import numpy as np
import scipy.io
import scipy.ndimage
import glob
import time
from joblib import Parallel, delayed
import tensorflow as tf
__DATASET_ROOT = "data/ShanghaiTech/"
def gaussian_filter_density(gt):
density = np.zeros(gt.shape, dtype=np.float32)
gt_count = np.count_nonzero(gt)
if gt_count == 0:
return density
pts = np.array(list(zip(np.nonzero(gt)[1], np.nonzero(gt)[0])))
for i, pt in enumerate(pts):
pt2d = np.zeros(gt.shape, dtype=np.float32)
pt2d[pt[1], pt[0]] = 1.
sigma = 15.0 # Constant sigma
density += scipy.ndimage.filters.gaussian_filter(pt2d, sigma, mode='constant')
return density
def generate_density_map(img_path):
mat_path = img_path.replace('.jpg', '.mat').replace('images', 'ground-truth').replace('IMG_', 'GT_IMG_')
mat = scipy.io.loadmat(mat_path)
imgfile = image.load_img(img_path)
img = image.img_to_array(imgfile)
k = np.zeros((img.shape[0], img.shape[1]))
gt = mat["image_info"][0, 0][0, 0][0]
for i in range(0, len(gt)):
if int(gt[i][1]) < img.shape[0] and int(gt[i][0]) < img.shape[1]:
k[int(gt[i][1]), int(gt[i][0])] = 1
k = gaussian_filter_density(k)
# To tensors
img = img / 255. # Normalization
concat_array = np.concatenate([img, k[:,:,None]], axis=2)
concat_tensor = tf.convert_to_tensor(concat_array, dtype=tf.float32)
x = tf.io.serialize_tensor(concat_tensor)
feature = {"data": tf.train.Feature(
bytes_list=tf.train.BytesList(value=[x.numpy()])
)}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def feature_generator(img_path_list):
num_sample_per_file = 10
n_jobs = 3
file_path = os.path.join(os.path.dirname(img_path_list[0]).replace("images", "tfrecords"), "{}.tfrecords")
file_idx = 0
os.makedirs(os.path.dirname(file_path), exist_ok=True)
paths = iter(img_path_list)
stop = False
while stop is False:
tfrecord_writer = tf.io.TFRecordWriter(file_path.format(file_idx))
try:
paths_to_process = [next(paths) for i in range(num_sample_per_file)]
except StopIteration:
stop = True
serial_samples = Parallel(n_jobs=n_jobs)(delayed(generate_density_map)(path) for path in paths_to_process)
for sample in serial_samples:
tfrecord_writer.write(sample)
file_idx += 1
def generate_shanghaitech_path(root):
part_A_train = os.path.join(root, 'part_A', 'train_data', 'images')
part_A_test = os.path.join(root, 'part_A', 'test_data', 'images')
part_B_train = os.path.join(root, 'part_B', 'train_data', 'images')
part_B_test = os.path.join(root, 'part_B', 'test_data', 'images')
path_sets = [part_A_train, part_A_test, part_B_train, part_B_test]
list_paths = [[] for _ in path_sets]
for i, path in enumerate(path_sets):
for img_path in glob.glob(os.path.join(path, '*.jpg')):
print(img_path)
list_paths[i].append(img_path)
return list_paths
if __name__ == "__main__":
start_time = time.time()
a_train, a_test, b_train, b_test = generate_shanghaitech_path(__DATASET_ROOT)
# Generate only for the Shanghai part B
feature_generator(b_train)
feature_generator(b_test)
print("--- %s seconds ---" % (time.time() - start_time))