-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
220 lines (172 loc) · 7.55 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import tensorflow as tf
import scipy.misc
import numpy as np
from sklearn.neighbors import NearestNeighbors
import PIL
from PIL import Image
BATCH_SIZE =64
class batch_norm(object):
def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train=True):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train,
scope=self.name)
def weight_variable(shape, name, stddev=0.02, trainable=True):
try:
dtype = tf.float32
var = tf.get_variable(name, shape, tf.float32, trainable=trainable,
initializer=tf.random_normal_initializer(
stddev=stddev, dtype=dtype))
return var
except ValueError as err:
msg = "NOTE: Usually, this is due to an issue with the image dimensions. Did you correctly set '--crop' or '--input_height' or '--output_height'?"
err.args = err.args + (msg,)
raise
def bias_variable(shape, name, bias_start=0.0, trainable = True):
dtype = tf.float32
var = tf.get_variable(name, shape, tf.float32, trainable=trainable,
initializer=tf.constant_initializer(
bias_start, dtype=dtype))
return var
def conv2d(x, output_channels, name, k_h=5, k_w=5):
with tf.variable_scope(name):
x_shape = x.get_shape().as_list()
w = weight_variable(shape=[k_h, k_w, x_shape[-1], output_channels], name='weights')
b = bias_variable([output_channels], name='biases')
conv = tf.nn.conv2d(x, w, strides=[1, 2, 2, 1], padding='SAME') + b
return conv
def deconv2d(x, output_shape, name, k_h=5, k_w=5):
x_shape = x.get_shape().as_list()
with tf.variable_scope(name):
w = weight_variable([k_h, k_w, output_shape[-1], x_shape[-1]], name='weights')
bias = bias_variable([output_shape[-1]], name='biases')
deconv = tf.nn.conv2d_transpose(x, w, output_shape, strides=[1, 2, 2, 1], padding='SAME') + bias
return deconv
def fully_connect(x, channels_out, name):
shape = x.get_shape().as_list()
channels_in = shape[1]
with tf.variable_scope(name):
weights = weight_variable([channels_in, channels_out], name='weights')
biases = bias_variable([channels_out], name='biases')
return tf.matmul(x, weights) + biases
def lrelu(x, leak=0.2):
return tf.maximum(x, leak * x)
def conv_cond_concat(value, cond):
value_shapes = value.get_shape().as_list()
cond_shapes = cond.get_shape().as_list()
return tf.concat([value, cond * tf.ones(value_shapes[0:3] + cond_shapes[3:])], 3)
def relu(value):
return tf.nn.relu(value)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
def generator(z, y, training=True):
s = 64
s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)
g_bn0 = batch_norm(name='g_bn0')
g_bn1 = batch_norm(name='g_bn1')
g_bn2 = batch_norm(name='g_bn2')
g_bn3 = batch_norm(name='g_bn3')
reduced_text_embedding =lrelu( linear(y, 100, 'g_embedding') )
z_concat = tf.concat([z, reduced_text_embedding],1)
z_ = linear(z_concat, 128*8*s16*s16, 'g_h0_lin')
h0 = tf.reshape(z_, [-1, s16, s16,128 * 8])
h0 = tf.nn.relu(g_bn0(h0))
h1 = deconv2d(h0, [BATCH_SIZE, s8, s8, 128*4], name='g_h1')
h1 = tf.nn.relu(g_bn1(h1))
h2 = deconv2d(h1, [BATCH_SIZE, s4, s4, 128*2], name='g_h2')
h2 = tf.nn.relu(g_bn2(h2))
h3 = deconv2d(h2, [BATCH_SIZE, s2, s2, 128*1], name='g_h3')
h3 = tf.nn.relu(g_bn3(h3))
h4 = deconv2d(h3, [BATCH_SIZE, s, s, 3], name='g_h4')
return tf.nn.tanh(h4)
def discriminator(image, t_text_embedding, reuse=False, training=True):
# with tf.variable_scope(tf.get_variable_scope(),reuse=reuse):
if reuse:
tf.get_variable_scope().reuse_variables()
d_bn1 = batch_norm(name='d_bn1')
d_bn2 = batch_norm(name='d_bn2')
d_bn3 = batch_norm(name='d_bn3')
d_bn4 = batch_norm(name='d_bn4')
h0 = lrelu(conv2d(image, 128, name = 'd_h0_conv')) #32
h1 = lrelu( d_bn1(conv2d(h0, 128*2, name = 'd_h1_conv'))) #16
h2 = lrelu( d_bn2(conv2d(h1, 128*4, name = 'd_h2_conv'))) #8
h3 = lrelu( d_bn3(conv2d(h2, 128*8, name = 'd_h3_conv'))) #4
# ADD TEXT EMBEDDING TO THE NETWORK
reduced_text_embeddings = lrelu(linear(t_text_embedding, 100, 'd_embedding'))
reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
tiled_embeddings = tf.tile(reduced_text_embeddings, [1,4,4,1], name='tiled_embeddings')
h3_concat = tf.concat([h3, tiled_embeddings],3, name='h3_concat')
h3_new = lrelu( d_bn4(conv2d(h3_concat, 128*8,name = 'd_h3_conv_new'))) #4
h4 = linear(tf.reshape(h3_new, [BATCH_SIZE, -1]), 1, 'd_h3_lin')
return tf.nn.sigmoid(h4), h4
def sampler(z, y, training=False):
tf.get_variable_scope().reuse_variables()
return generator(z, y, training=training)
def save_images(images, size, path):
img = (images + 1.0) / 2.0
h, w = img.shape[1], img.shape[2]
merge_img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
if j >= size[0]:
break
merge_img[j * h:j * h + h, i * w:i * w + w, :] = image
return scipy.misc.imsave(path, merge_img)
def read_data(data):
values = list(data.values())
keys = list(data.keys()) # BATCH_SIZE is the windows size
pairs = list(zip(keys,values))
np.random.shuffle(pairs)
keys,values = zip(*pairs)
img=scipy.misc.imread("./selected/"+'/'+keys[0].split('*')[0]+".jpg").astype(np.float)
img=transform(img,128,128,64,64,True)
img=np.asarray(img).reshape(1,-1)
labels=values[0].reshape(1,-1)
for i,j in zip(keys[1:],values[1:]):
try:
img_o=scipy.misc.imread("./selected/"+'/'+i.split('*')[0]+".jpg").astype(np.float)
img_o=transform(img_o,128,128,64,64,True)
img_o=np.asarray(img_o).reshape(1,-1)
img=np.concatenate([img,img_o],axis=0)
labels=np.concatenate([labels,j.reshape(1,-1)],axis=0)
except (FileNotFoundError,IOError):
print("Error:"+i)
pass
return [img,labels]
def transform(image, input_height, input_width,
resize_height=64, resize_width=64, crop=True):
if crop:
cropped_image = center_crop(
image, input_height, input_width,
resize_height, resize_width)
else:
cropped_image = scipy.misc.imresize(image, [resize_height, resize_width])
return np.array(cropped_image)/127.5 - 1.
def center_crop(x, crop_h, crop_w,
resize_h=64, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(
x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w])