-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathParamCCPrecision.agda
154 lines (124 loc) · 6.48 KB
/
ParamCCPrecision.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality
using (_≡_; _≢_; refl)
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
open import Types
open import Variables
open import Labels
open import PreCastStructureWithPrecision
module ParamCCPrecision (pcsp : PreCastStructWithPrecision) where
open PreCastStructWithPrecision pcsp
open import ParamCastCalculus Cast Inert
{- The precision relation for the cast calculus. -}
infix 6 _,_⊢_⊑ᶜ_
{- The precision relation for substitution. -}
infix 6 _,_,_,_⊢_⊑ˢ_
-- Term precision of CC.
data _,_⊢_⊑ᶜ_ : ∀ (Γ Γ′ : Context) → {A A′ : Type} → Γ ⊢ A → Γ′ ⊢ A′ → Set where
⊑ᶜ-prim : ∀ {Γ Γ′ A} {k : rep A} {i : Prim A}
------------------------------
→ Γ , Γ′ ⊢ $_ {Γ} k {i} ⊑ᶜ $_ {Γ′} k {i}
⊑ᶜ-var : ∀ {Γ Γ′ A A′} {x : Γ ∋ A} {x′ : Γ′ ∋ A′}
→ ∋→ℕ x ≡ ∋→ℕ x′
-----------------
→ Γ , Γ′ ⊢ ` x ⊑ᶜ ` x′
⊑ᶜ-ƛ : ∀ {Γ Γ′ A A′ B B′} {N : Γ , A ⊢ B} {N′ : Γ′ , A′ ⊢ B′}
→ A ⊑ A′
→ (Γ , A) , (Γ′ , A′) ⊢ N ⊑ᶜ N′
------------------------------
→ Γ , Γ′ ⊢ ƛ N ⊑ᶜ ƛ N′
⊑ᶜ-· : ∀ {Γ Γ′ A A′ B B′} {L : Γ ⊢ A ⇒ B} {L′ : Γ′ ⊢ A′ ⇒ B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′}
→ Γ , Γ′ ⊢ L ⊑ᶜ L′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
--------------------------
→ Γ , Γ′ ⊢ L · M ⊑ᶜ L′ · M′
⊑ᶜ-if : ∀ {Γ Γ′ A A′} {L : Γ ⊢ ` 𝔹} {L′ : Γ′ ⊢ ` 𝔹} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′} {N : Γ ⊢ A} {N′ : Γ′ ⊢ A′}
→ Γ , Γ′ ⊢ L ⊑ᶜ L′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
→ Γ , Γ′ ⊢ N ⊑ᶜ N′
---------------------------------
→ Γ , Γ′ ⊢ if L M N ⊑ᶜ if L′ M′ N′
⊑ᶜ-cons : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′} {N : Γ ⊢ B} {N′ : Γ′ ⊢ B′}
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
→ Γ , Γ′ ⊢ N ⊑ᶜ N′
--------------------------------
→ Γ , Γ′ ⊢ cons M N ⊑ᶜ cons M′ N′
⊑ᶜ-fst : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ A `× B} {M′ : Γ′ ⊢ A′ `× B′}
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
-------------------------
→ Γ , Γ′ ⊢ fst M ⊑ᶜ fst M′
⊑ᶜ-snd : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ A `× B} {M′ : Γ′ ⊢ A′ `× B′}
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
-------------------------
→ Γ , Γ′ ⊢ snd M ⊑ᶜ snd M′
⊑ᶜ-inl : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′}
→ B ⊑ B′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
------------------------------------------
→ Γ , Γ′ ⊢ inl {B = B} M ⊑ᶜ inl {B = B′} M′
⊑ᶜ-inr : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ B} {M′ : Γ′ ⊢ B′}
→ A ⊑ A′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
------------------------------------------
→ Γ , Γ′ ⊢ inr {A = A} M ⊑ᶜ inr {A = A′} M′
⊑ᶜ-case : ∀ {Γ Γ′ A A′ B B′ C C′} {L : Γ ⊢ A `⊎ B} {L′ : Γ′ ⊢ A′ `⊎ B′} {M : Γ , A ⊢ C} {M′ : Γ′ , A′ ⊢ C′} {N : Γ , B ⊢ C} {N′ : Γ′ , B′ ⊢ C′}
→ Γ , Γ′ ⊢ L ⊑ᶜ L′
→ A ⊑ A′ → B ⊑ B′
→ (Γ , A) , (Γ′ , A′) ⊢ M ⊑ᶜ M′
→ (Γ , B) , (Γ′ , B′) ⊢ N ⊑ᶜ N′
-------------------------------------
→ Γ , Γ′ ⊢ case L M N ⊑ᶜ case L′ M′ N′
⊑ᶜ-cast : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′} {c : Cast (A ⇒ B)} {c′ : Cast (A′ ⇒ B′)}
→ A ⊑ A′ → B ⊑ B′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
------------------------------
→ Γ , Γ′ ⊢ M ⟨ c ⟩ ⊑ᶜ M′ ⟨ c′ ⟩
⊑ᶜ-castl : ∀ {Γ Γ′ A A′ B} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′} {c : Cast (A ⇒ B)}
→ A ⊑ A′ → B ⊑ A′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
-----------------------
→ Γ , Γ′ ⊢ M ⟨ c ⟩ ⊑ᶜ M′
⊑ᶜ-castr : ∀ {Γ Γ′ A A′ B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′} {c′ : Cast (A′ ⇒ B′)}
→ A ⊑ A′ → A ⊑ B′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
------------------------
→ Γ , Γ′ ⊢ M ⊑ᶜ M′ ⟨ c′ ⟩
{- The cases below are for wrapped inert casts. -}
⊑ᶜ-wrap : ∀ {Γ Γ′ A A′ B B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′}
{c : Cast (A ⇒ B)} {c′ : Cast (A′ ⇒ B′)}
{i : Inert c} {i′ : Inert c′}
→ ⟪ i ⟫⊑⟪ i′ ⟫
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
→ (B ≡ ⋆ → B′ ≡ ⋆)
------------------------------
→ Γ , Γ′ ⊢ M ⟪ i ⟫ ⊑ᶜ M′ ⟪ i′ ⟫
⊑ᶜ-wrapl : ∀ {Γ Γ′ A A′ B} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′}
{c : Cast (A ⇒ B)} {i : Inert c}
→ ⟪ i ⟫⊑ A′
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
-- NOTE: Not sure if we need to require Value M′ here.
-----------------------
→ Γ , Γ′ ⊢ M ⟪ i ⟫ ⊑ᶜ M′
⊑ᶜ-wrapr : ∀ {Γ Γ′ A A′ B′} {M : Γ ⊢ A} {M′ : Γ′ ⊢ A′}
{c′ : Cast (A′ ⇒ B′)} {i′ : Inert c′}
→ A ⊑⟪ i′ ⟫
→ Γ , Γ′ ⊢ M ⊑ᶜ M′
→ A ≢ ⋆
------------------------
→ Γ , Γ′ ⊢ M ⊑ᶜ M′ ⟪ i′ ⟫
⊑ᶜ-blame : ∀ {Γ Γ′ A A′} {M : Γ ⊢ A} {ℓ}
→ A ⊑ A′
-------------------------------
→ Γ , Γ′ ⊢ M ⊑ᶜ blame {Γ′} {A′} ℓ
data _,_,_,_⊢_⊑ˢ_ : (Γ Δ Γ′ Δ′ : Context) → Subst Γ Δ → Subst Γ′ Δ′ → Set where
⊑ˢ-σ₀ : ∀ {Δ Δ′ A A′} {M : Δ ⊢ A} {M′ : Δ′ ⊢ A′}
→ Δ , Δ′ ⊢ M ⊑ᶜ M′
------------------------------------------
→ (Δ , A) , Δ , (Δ′ , A′) , Δ′ ⊢ (subst-zero M) ⊑ˢ (subst-zero M′)
⊑ˢ-exts : ∀ {Γ Γ′ Δ Δ′ B B′} {σ : Subst Γ Δ} {σ′ : Subst Γ′ Δ′}
→ Γ , Δ , Γ′ , Δ′ ⊢ σ ⊑ˢ σ′
-------------------------------------------------------------------
→ (Γ , B) , (Δ , B) , (Γ′ , B′) , (Δ′ , B′) ⊢ (exts σ) ⊑ˢ (exts σ′)
-- Example(s):
_ : ∅ , ∅ ⊢ ƛ_ {B = ⋆} {⋆} (` Z) ⊑ᶜ ƛ_ {B = ` Nat} {` Nat} (` Z)
_ = ⊑ᶜ-ƛ unk⊑ (⊑ᶜ-var refl)