-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathParamCastCalculusABT.agda
155 lines (130 loc) · 5.77 KB
/
ParamCastCalculusABT.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
open import Data.Unit using (⊤) renaming (tt to unit)
open import Data.List
open import Data.Vec using (Vec) renaming ([] to []ᵥ; _∷_ to _∷ᵥ_)
open import Data.Product
using (_×_; proj₁; proj₂; ∃; ∃-syntax; Σ; Σ-syntax)
renaming (_,_ to ⟨_,_⟩ )
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; trans; sym; cong; cong₂; cong-app)
open import Types
open import Labels
open import PreCastStructure
open import Syntax
module ParamCastCalculusABT (pcs : PreCastStruct) where
open import ParamCCSyntaxABT pcs public
{-
Here we define the Cast Calculus in a way that parameterizes over the
actual casts, to enable succinct definitions and proofs of type safety
for many different cast calculi. The Agda type constructor for
representing casts is given by the module parameter named Cast. The
Type argument to Cast is typically a function type whose domain is the
source of the cast and whose codomain is the target type of the
cast. However, in cast calculi with fancy types such as intersections,
the type of a cast may not literally be a function type.
-}
𝑉⊢ : List Type → Var → Type → Type → Set
𝑃⊢ : (op : Op) → Vec Type (length (sig op)) → BTypes Type (sig op) → Type → Set
-- ⊢var : ∀ {Γ A} {x : ℕ}
-- → Γ ∋ x ⦂ A
-- --------------
-- → Γ ⊢ ` x ⦂ A
𝑉⊢ Γ x A B = A ≡ B
-- ⊢lam : ∀ {Γ A B} {N}
-- → Γ , A ⊢ N ⦂ B
-- -------------------
-- → Γ ⊢ ƛ A ˙ N ⦂ A ⇒ B
𝑃⊢ (op-lam A₁) (B ∷ᵥ []ᵥ) ⟨ ⟨ A , tt ⟩ , tt ⟩ C =
C ≡ A ⇒ B × A ≡ A₁
-- ⊢app : ∀ {Γ A B} {L M}
-- → Γ ⊢ L ⦂ A ⇒ B
-- → Γ ⊢ M ⦂ A
-- --------------------
-- → Γ ⊢ L · M ⦂ B
𝑃⊢ op-app (C ∷ᵥ A ∷ᵥ []ᵥ) ⟨ tt , ⟨ tt , tt ⟩ ⟩ B =
C ≡ A ⇒ B
-- ⊢lit : ∀ {Γ A} {r : rep A} {p : Prim A}
-- ------------------
-- → Γ ⊢ $ r # p ⦂ A
𝑃⊢ (op-lit {A₁} r p) []ᵥ tt A = A ≡ A₁
-- ⊢if : ∀ {Γ A} {L M N}
-- → Γ ⊢ L ⦂ ` 𝔹
-- → Γ ⊢ M ⦂ A
-- → Γ ⊢ N ⦂ A
-- --------------------------------------
-- → Γ ⊢ if L then M else N endif ⦂ A
𝑃⊢ op-if (B ∷ᵥ A₁ ∷ᵥ A₂ ∷ᵥ []ᵥ) ⟨ tt , ⟨ tt , ⟨ tt , tt ⟩ ⟩ ⟩ A =
(A ≡ A₁ × A₁ ≡ A₂) × B ≡ ` 𝔹
-- ⊢cons : ∀ {Γ A B} {M N}
-- → Γ ⊢ M ⦂ A
-- → Γ ⊢ N ⦂ B
-- -------------------------
-- → Γ ⊢ ⟦ M , N ⟧ ⦂ A `× B
𝑃⊢ op-cons (A ∷ᵥ B ∷ᵥ []ᵥ) ⟨ tt , ⟨ tt , tt ⟩ ⟩ C = C ≡ A `× B
-- ⊢fst : ∀ {Γ A B} {M}
-- → Γ ⊢ M ⦂ A `× B
-- ---------------------
-- → Γ ⊢ fst M ⦂ A
𝑃⊢ op-fst (C ∷ᵥ []ᵥ) ⟨ tt , tt ⟩ A = ∃[ B ] C ≡ A `× B
-- ⊢snd : ∀ {Γ A B} {M}
-- → Γ ⊢ M ⦂ A `× B
-- ---------------------
-- → Γ ⊢ snd M ⦂ B
𝑃⊢ op-snd (C ∷ᵥ []ᵥ) ⟨ tt , tt ⟩ B = ∃[ A ] C ≡ A `× B
-- ⊢inl : ∀ {Γ A B} {M}
-- → Γ ⊢ M ⦂ A
-- --------------------------
-- → Γ ⊢ inl M other B ⦂ A `⊎ B
𝑃⊢ (op-inl B) (A ∷ᵥ []ᵥ) ⟨ tt , tt ⟩ C = C ≡ A `⊎ B
-- ⊢inr : ∀ {Γ A B} {M}
-- → Γ ⊢ M ⦂ B
-- --------------------------
-- → Γ ⊢ inr M other A ⦂ A `⊎ B
𝑃⊢ (op-inr A) (B ∷ᵥ []ᵥ) ⟨ tt , tt ⟩ C = C ≡ A `⊎ B
-- ⊢case : ∀ {Γ A B C} {L M N}
-- → Γ ⊢ L ⦂ A `⊎ B
-- → Γ , A ⊢ M ⦂ C
-- → Γ , B ⊢ N ⦂ C
-- -----------------------------------------
-- → Γ ⊢ case L of A ⇒ M ∣ B ⇒ N ⦂ C
𝑃⊢ (op-case A₁ B₁) (X ∷ᵥ C₁ ∷ᵥ C₂ ∷ᵥ []ᵥ) ⟨ tt , ⟨ ⟨ A , tt ⟩ , ⟨ ⟨ B , tt ⟩ , tt ⟩ ⟩ ⟩ C =
(C ≡ C₁ × C₁ ≡ C₂) × (X ≡ A `⊎ B × A ≡ A₁ × B ≡ B₁)
-- ⊢cast : ∀ {Γ A B} {M}
-- → Γ ⊢ M ⦂ A
-- → (c : Cast (A ⇒ B))
-- --------------------
-- → Γ ⊢ M ⟨ c ⟩ ⦂ B
𝑃⊢ (op-cast {A₁} {B₁} c) (A ∷ᵥ []ᵥ) ⟨ tt , tt ⟩ B = A ≡ A₁ × B ≡ B₁
-- ⊢wrap : ∀ {Γ A B} {M}
-- → Γ ⊢ M ⦂ A
-- → (c : Cast (A ⇒ B))
-- → (i : Inert c)
-- ---------------------
-- → Γ ⊢ M ⟨ c ₍ i ₎⟩ ⦂ B
𝑃⊢ (op-wrap {A₁} {B₁} c i) (A ∷ᵥ []ᵥ) ⟨ tt , tt ⟩ B = A ≡ A₁ × B ≡ B₁
-- ⊢blame : ∀ {Γ A} {ℓ}
-- -----------------
-- → Γ ⊢ blame ℓ ⦂ A
𝑃⊢ (op-blame A ℓ) []ᵥ tt C = C ≡ A
pattern 𝐶⊢-ƛ = ⟨ refl , refl ⟩
pattern 𝐶⊢-· = refl
pattern 𝐶⊢-$ = refl
pattern 𝐶⊢-if = ⟨ ⟨ refl , refl ⟩ , refl ⟩
pattern 𝐶⊢-cons = refl
pattern 𝐶⊢-fst = ⟨ _ , refl ⟩
pattern 𝐶⊢-snd = ⟨ _ , refl ⟩
pattern 𝐶⊢-inl = refl
pattern 𝐶⊢-inr = refl
pattern 𝐶⊢-case = ⟨ ⟨ refl , refl ⟩ , ⟨ refl , ⟨ refl , refl ⟩ ⟩ ⟩
pattern 𝐶⊢-cast = ⟨ refl , refl ⟩
pattern 𝐶⊢-wrap = ⟨ refl , refl ⟩
pattern 𝐶⊢-blame = refl
infix 4 _⊢_⦂_
open import ABTPredicate Op sig 𝑉⊢ 𝑃⊢ public renaming (_⊢_⦂_ to predicate)
_⊢_⦂_ = predicate
open import SubstPreserve Op sig Type 𝑉⊢ 𝑃⊢ (λ x → refl) (λ { refl refl → refl })
(λ x → x) (λ { refl ⊢M → ⊢M }) public
using (preserve-rename; preserve-subst; preserve-substitution)
open import GenericPredicate pcs
open GenericPredicatePatterns 𝑉⊢ 𝑃⊢ public