-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathdata_loader.py
53 lines (43 loc) · 1.56 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''Data loader for UCI letter, spam and MNIST datasets.
'''
# Necessary packages
import numpy as np
from utils import binary_sampler
from keras.datasets import mnist
def data_loader (data_name, miss_rate):
'''Loads datasets and introduce missingness.
Args:
- data_name: letter, spam, or mnist
- miss_rate: the probability of missing components
Returns:
data_x: original data
miss_data_x: data with missing values
data_m: indicator matrix for missing components
'''
# Load data
if data_name in ['letter', 'spam']:
file_name = 'data/'+data_name+'.csv'
data_x = np.loadtxt(file_name, delimiter=",", skiprows=1)
elif data_name == 'mnist':
(data_x, _), _ = mnist.load_data()
data_x = np.reshape(np.asarray(data_x), [60000, 28*28]).astype(float)
# Parameters
no, dim = data_x.shape
# Introduce missing data
data_m = binary_sampler(1-miss_rate, no, dim)
miss_data_x = data_x.copy()
miss_data_x[data_m == 0] = np.nan
return data_x, miss_data_x, data_m