diff --git a/julearn/model_selection/continuous_stratified_kfold.py b/julearn/model_selection/continuous_stratified_kfold.py index d5f115a65..5845df5dc 100644 --- a/julearn/model_selection/continuous_stratified_kfold.py +++ b/julearn/model_selection/continuous_stratified_kfold.py @@ -80,12 +80,12 @@ def __init__( shuffle=False, random_state=None, ): - self._n_bins = n_bins + self.n_bins = n_bins if method not in ["binning", "quantile"]: raise_error( "The method parameter must be either 'binning' or 'quantile'.", ) - self._method = method + self.method = method super().__init__( n_splits=n_splits, shuffle=shuffle, random_state=random_state ) @@ -127,7 +127,7 @@ def split( split. You can make the results identical by setting `random_state` to an integer. """ - discrete_y = _discretize_y(self._method, y, self._n_bins) + discrete_y = _discretize_y(self.method, y, self.n_bins) return super().split(X, discrete_y, groups) @@ -223,12 +223,12 @@ def __init__( shuffle=False, random_state=None, ): - self._n_bins = n_bins + self.n_bins = n_bins if method not in ["binning", "quantile"]: raise_error( "The method parameter must be either 'binning' or 'quantile'.", ) - self._method = method + self.method = method super().__init__( n_splits=n_splits, shuffle=shuffle, random_state=random_state ) @@ -270,7 +270,7 @@ def split( split. You can make the results identical by setting `random_state` to an integer. """ - discrete_y = _discretize_y(self._method, y, self._n_bins) + discrete_y = _discretize_y(self.method, y, self.n_bins) return super().split(X, discrete_y, groups)