diff --git a/Python/numpyro_hierarchical_forecasting_2.ipynb b/Python/numpyro_hierarchical_forecasting_2.ipynb index 6fa8338..38507aa 100644 --- a/Python/numpyro_hierarchical_forecasting_2.ipynb +++ b/Python/numpyro_hierarchical_forecasting_2.ipynb @@ -100,12 +100,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "torch.Size([50, 50, 78888, 1])\n" + "torch.Size([50, 50, 78888])\n" ] } ], "source": [ - "data = dataset[\"counts\"].permute(1, 2, 0).unsqueeze(-1).log1p()\n", + "data = dataset[\"counts\"].permute(1, 2, 0).log1p()\n", "T = data.shape[-2]\n", "print(data.shape)" ] @@ -123,7 +123,7 @@ "metadata": {}, "outputs": [], "source": [ - "T2 = data.size(-2) # end\n", + "T2 = data.size(-1) # end\n", "T1 = T2 - 24 * 7 * 2 # train/test split\n", "T0 = T1 - 24 * 90 # beginning: train on 90 days of data" ] @@ -137,16 +137,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "y: (50, 50, 2496, 1)\n", - "y_train: (50, 50, 2160, 1)\n", - "y_test: (50, 50, 336, 1)\n" + "y: (50, 50, 2496)\n", + "y_train: (50, 50, 2160)\n", + "y_test: (50, 50, 336)\n" ] } ], "source": [ - "y = jnp.array(data[..., T0:T2, :])\n", - "y_train = jnp.array(data[..., T0:T1, :])\n", - "y_test = jnp.array(data[..., T1:T2, :])\n", + "y = jnp.array(data[..., T0:T2])\n", + "y_train = jnp.array(data[..., T0:T1])\n", + "y_test = jnp.array(data[..., T1:T2])\n", "\n", "print(f\"y: {y.shape}\")\n", "print(f\"y_train: {y_train.shape}\")\n", @@ -159,7 +159,7 @@ "metadata": {}, "outputs": [], "source": [ - "n_stations = y_train.shape[-3]\n", + "n_stations = y_train.shape[-2]\n", "\n", "time = jnp.array(range(T0, T2))\n", "time_train = jnp.array(range(T0, T1))\n", @@ -169,8 +169,8 @@ "t_max_test = time_test.size\n", "\n", "assert time_train.size + time_test.size == time.size\n", - "assert y_train.shape == (n_stations, n_stations, t_max_train, 1)\n", - "assert y_test.shape == (n_stations, n_stations, t_max_test, 1)" + "assert y_train.shape == (n_stations, n_stations, t_max_train)\n", + "assert y_test.shape == (n_stations, n_stations, t_max_test)" ] }, { @@ -346,7 +346,7 @@ { "data": { "text/plain": [ - "(50, 50, 2496, 1)" + "(50, 50, 2496)" ] }, "execution_count": 12, @@ -365,11 +365,11 @@ "outputs": [], "source": [ "def model(\n", - " covariates: Float[Array, \"n_series n_series t_max 1\"],\n", - " y: Float[Array, \"n_series n_series t_max 1\"] | None = None,\n", + " covariates: Float[Array, \"n_series n_series t_max\"],\n", + " y: Float[Array, \"n_series n_series t_max\"] | None = None,\n", ") -> None:\n", " # Get the time and feature dimensions\n", - " n_series, n_series, t_max, _ = covariates.shape\n", + " n_series, n_series, t_max = covariates.shape\n", "\n", " origin_plate = numpyro.plate(\"origin\", n_series, dim=-3)\n", " destin_plate = numpyro.plate(\"destin\", n_series, dim=-2)\n", @@ -411,8 +411,6 @@ " destin_scale = numpyro.sample(\"destin_scale\", dist.LogNormal(-5, 5))\n", " scale = origin_scale + destin_scale\n", "\n", - " scale = jnp.expand_dims(scale, axis=-2)\n", - "\n", " # Repeat the seasonal parameters to match the length of the time series\n", " seasonal = origin_seasonal + destin_seasonal\n", " seasonal_repeat = periodic_repeat_jax(seasonal, t_max, dim=-1)\n", @@ -431,10 +429,8 @@ "\n", " pred_levels = pred_levels.transpose(1, 0)\n", "\n", - " # Compute the mean of the model\n", - " mu = seasonal_repeat + pairwise + pred_levels\n", - "\n", - " mu = mu[..., None]\n", + " # # Compute the mean of the model\n", + " mu = pred_levels + seasonal_repeat + pairwise\n", "\n", " # Sample the observations\n", " with numpyro.handlers.condition(data={\"obs\": y}):\n", @@ -453,6 +449,14 @@ "execution_count": 14, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50, 50, 1)\n", + "(50, 50, 1)\n" + ] + }, { "data": { "image/svg+xml": [ @@ -640,7 +644,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 14, @@ -752,27 +756,50 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50, 50, 1)\n", + "(50, 50, 1)\n", + "(50, 50, 1)\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 1000/1000 [00:38<00:00, 26.19it/s, init loss: 3533380864.0000, avg. loss [951-1000]: 18223372.2400]\n" + " 0%| | 0/1000 [00:00" ] @@ -790,7 +817,7 @@ "%%time\n", "\n", "guide = AutoNormal(model)\n", - "optimizer = numpyro.optim.Adam(step_size=0.05)\n", + "optimizer = numpyro.optim.Adam(step_size=0.1)\n", "svi = SVI(model, guide, optimizer, loss=Trace_ELBO())\n", "num_steps = 1000\n", "\n", @@ -842,29 +869,18 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 29, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "(100, 50, 50, 2160, 1)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "(50, 50, 1)\n", + "(50, 50, 1)\n" + ] } ], - "source": [ - "{k: v for k, v in posterior(rng_subkey, covariates_train).items()}[\"obs\"].shape\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], "source": [ "rng_key, rng_subkey = random.split(rng_key)\n", "\n", @@ -872,846 +888,25 @@ " posterior_predictive={\n", " k: v[None, ...] for k, v in posterior(rng_subkey, covariates_train).items()\n", " },\n", - " coords={\"time_train\": time_train, \"n_series\": jnp.arange(n_stations)},\n", - " dims={\"obs\": [\"n_series\", \"n_series\", \"time_train\",]},\n", + " coords={\n", + " \"time_train\": time_train,\n", + " \"n_series_origin\": jnp.arange(n_stations),\n", + " \"n_series_destin\": jnp.arange(n_stations),\n", + " },\n", + " dims={\"obs\": [\"n_series_origin\", \"n_series_destin\", \"time_train\"]},\n", ")\n", "\n", - "# idata_test = az.from_dict(\n", - "# posterior_predictive={k: v for k, v in posterior(rng_subkey, covariates).items()},\n", - "# # coords={\"time\": time, \"n_series\": jnp.arange(n_stations)},\n", - "# # dims={\"obs\": [\"n_series\", \"n_series\", \"time\"]},\n", - "# )" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
arviz.InferenceData
\n", - "
\n", - "
    \n", - " \n", - "
  • \n", - " \n", - " \n", - "
    \n", - "
    \n", - "
      \n", - "
      \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
      <xarray.Dataset> Size: 2GB\n",
      -       "Dimensions:    (chain: 1, draw: 100, obs_dim_0: 50, obs_dim_1: 50,\n",
      -       "                obs_dim_2: 2160, obs_dim_3: 1)\n",
      -       "Coordinates:\n",
      -       "  * chain      (chain) int64 8B 0\n",
      -       "  * draw       (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 92 93 94 95 96 97 98 99\n",
      -       "  * obs_dim_0  (obs_dim_0) int64 400B 0 1 2 3 4 5 6 7 ... 43 44 45 46 47 48 49\n",
      -       "  * obs_dim_1  (obs_dim_1) int64 400B 0 1 2 3 4 5 6 7 ... 43 44 45 46 47 48 49\n",
      -       "  * obs_dim_2  (obs_dim_2) int64 17kB 0 1 2 3 4 5 ... 2155 2156 2157 2158 2159\n",
      -       "  * obs_dim_3  (obs_dim_3) int64 8B 0\n",
      -       "Data variables:\n",
      -       "    obs        (chain, draw, obs_dim_0, obs_dim_1, obs_dim_2, obs_dim_3) float32 2GB ...\n",
      -       "Attributes:\n",
      -       "    created_at:     2024-10-04T12:20:19.067139+00:00\n",
      -       "    arviz_version:  0.20.0

      \n", - "
    \n", - "
    \n", - "
  • \n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - "Inference data with groups:\n", - "\t> posterior_predictive" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "idata_train" + "idata_test = az.from_dict(\n", + " posterior_predictive={\n", + " k: v[None, ...] for k, v in posterior(rng_subkey, covariates).items()\n", + " },\n", + " coords={\n", + " \"time\": time,\n", + " \"n_series_origin\": jnp.arange(n_stations),\n", + " \"n_series_destin\": jnp.arange(n_stations),\n", + " },\n", + " dims={\"obs\": [\"n_series_origin\", \"n_series_destin\", \"time\"]},\n", + ")" ] }, { @@ -1723,9 +918,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "TypeCheckError", + "evalue": "Type-check error whilst checking the parameters of __main__.crps.\nThe problem arose whilst typechecking parameter 'truth'.\nActual value: f32[50,50,2160]\nExpected type: .\n----------------------\nCalled with parameters: {'truth': f32[50,50,2160], 'pred': f32[100,50,50,2160], 'sample_weight': None}\nParameter annotations: (truth: Float[Array, 't_max n_series'], pred: Float[Array, 'n_samples t_max n_series'], sample_weight: Float[Array, 't_max'] | None = None) -> Any.\n", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mBeartypeCallHintParamViolation\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/jaxtyping/_decorator.py:412\u001b[0m, in \u001b[0;36mjaxtyped..wrapped_fn_impl\u001b[0;34m(args, kwargs, bound, memos)\u001b[0m\n\u001b[1;32m 411\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 412\u001b[0m \u001b[43mparam_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m AnnotationError:\n", + "File \u001b[0;32m<@beartype(__main__.crps) at 0x3c2680040>:31\u001b[0m, in \u001b[0;36mcrps\u001b[0;34m(__beartype_object_16908407488, __beartype_get_violation, __beartype_conf, __beartype_object_16908409216, __beartype_object_17320097920, __beartype_check_meta, __beartype_func, *args, **kwargs)\u001b[0m\n", + "\u001b[0;31mBeartypeCallHintParamViolation\u001b[0m: Function __main__.crps() parameter truth=\"Array([[[0. , 0. , 0. , ..., 2.0794415, 1.3862944,\n 0.6931472],\n...)\" violates type hint , as this array has 3 dimensions, not the 2 expected by the type hint.", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mBeartypeCallHintParamViolation\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/jaxtyping/_decorator.py:769\u001b[0m, in \u001b[0;36m_get_problem_arg\u001b[0;34m(param_signature, args, kwargs, arguments, module, typechecker)\u001b[0m\n\u001b[1;32m 768\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 769\u001b[0m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 770\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m<@beartype(__main__.check_single_arg) at 0x3c2680900>:29\u001b[0m, in \u001b[0;36mcheck_single_arg\u001b[0;34m(__beartype_object_16908407488, __beartype_get_violation, __beartype_conf, __beartype_check_meta, __beartype_func, *args, **kwargs)\u001b[0m\n", + "\u001b[0;31mBeartypeCallHintParamViolation\u001b[0m: Function __main__.check_single_arg() parameter truth=\"Array([[[0. , 0. , 0. , ..., 2.0794415, 1.3862944,\n 0.6931472],\n...)\" violates type hint , as this array has 3 dimensions, not the 2 expected by the type hint.", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mTypeCheckError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/jaxtyping/_decorator.py:417\u001b[0m, in \u001b[0;36mjaxtyped..wrapped_fn_impl\u001b[0;34m(args, kwargs, bound, memos)\u001b[0m\n\u001b[1;32m 416\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 417\u001b[0m argmsg \u001b[38;5;241m=\u001b[39m \u001b[43m_get_problem_arg\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mparam_signature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43mbound\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marguments\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 422\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodule\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 423\u001b[0m \u001b[43m \u001b[49m\u001b[43mtypechecker\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 424\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 425\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m TypeCheckError \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/jaxtyping/_decorator.py:772\u001b[0m, in \u001b[0;36m_get_problem_arg\u001b[0;34m(param_signature, args, kwargs, arguments, module, typechecker)\u001b[0m\n\u001b[1;32m 771\u001b[0m keep_value \u001b[38;5;241m=\u001b[39m _pformat(arguments[keep_name], short_self\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m--> 772\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m TypeCheckError(\n\u001b[1;32m 773\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mThe problem arose whilst typechecking parameter \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkeep_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 774\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mActual value: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkeep_value\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 775\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpected type: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkeep_annotation\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 776\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 777\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 778\u001b[0m \u001b[38;5;66;03m# Could not localise the problem to a single argument -- probably due to\u001b[39;00m\n\u001b[1;32m 779\u001b[0m \u001b[38;5;66;03m# e.g. a mismatched typevar, which each individual argument is okay with.\u001b[39;00m\n", + "\u001b[0;31mTypeCheckError\u001b[0m: \nThe problem arose whilst typechecking parameter 'truth'.\nActual value: f32[50,50,2160]\nExpected type: .", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mTypeCheckError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[31], line 27\u001b[0m\n\u001b[1;32m 23\u001b[0m per_obs_crps \u001b[38;5;241m=\u001b[39m absolute_error \u001b[38;5;241m-\u001b[39m jnp\u001b[38;5;241m.\u001b[39msum(diff \u001b[38;5;241m*\u001b[39m weight, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m) \u001b[38;5;241m/\u001b[39m num_samples\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m2\u001b[39m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m jnp\u001b[38;5;241m.\u001b[39maverage(per_obs_crps, weights\u001b[38;5;241m=\u001b[39msample_weight)\n\u001b[0;32m---> 27\u001b[0m crps_train \u001b[38;5;241m=\u001b[39m \u001b[43mcrps\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 28\u001b[0m \u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 29\u001b[0m \u001b[43m \u001b[49m\u001b[43mjnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marray\u001b[49m\u001b[43m(\u001b[49m\u001b[43midata_train\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mposterior_predictive\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchain\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 30\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 32\u001b[0m crps_test \u001b[38;5;241m=\u001b[39m crps(\n\u001b[1;32m 33\u001b[0m y_test,\n\u001b[1;32m 34\u001b[0m jnp\u001b[38;5;241m.\u001b[39marray(\n\u001b[1;32m 35\u001b[0m idata_test[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mposterior_predictive\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobs\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39msel(chain\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39msel(time\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mslice\u001b[39m(T1, T2))\n\u001b[1;32m 36\u001b[0m ),\n\u001b[1;32m 37\u001b[0m )\n", + " \u001b[0;31m[... skipping hidden 1 frame]\u001b[0m\n", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/jaxtyping/_decorator.py:446\u001b[0m, in \u001b[0;36mjaxtyped..wrapped_fn_impl\u001b[0;34m(args, kwargs, bound, memos)\u001b[0m\n\u001b[1;32m 444\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m TypeCheckError(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 446\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m TypeCheckError(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;66;03m# Actually call the function.\u001b[39;00m\n\u001b[1;32m 449\u001b[0m out \u001b[38;5;241m=\u001b[39m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "\u001b[0;31mTypeCheckError\u001b[0m: Type-check error whilst checking the parameters of __main__.crps.\nThe problem arose whilst typechecking parameter 'truth'.\nActual value: f32[50,50,2160]\nExpected type: .\n----------------------\nCalled with parameters: {'truth': f32[50,50,2160], 'pred': f32[100,50,50,2160], 'sample_weight': None}\nParameter annotations: (truth: Float[Array, 't_max n_series'], pred: Float[Array, 'n_samples t_max n_series'], sample_weight: Float[Array, 't_max'] | None = None) -> Any.\n" + ] + } + ], "source": [ "def crps(\n", " truth: Float[Array, \"t_max n_series\"],\n", @@ -1775,9 +999,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "KeyError", + "evalue": "\"'n_series' is not a valid dimension or coordinate for Dataset with dimensions FrozenMappingWarningOnValuesAccess({'chain': 1, 'draw': 100, 'n_series_origin': 50, 'n_series_destin': 50, 'time_train': 2160})\"", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[32], line 10\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, ax \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(axes):\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, hdi_prob \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m([\u001b[38;5;241m0.94\u001b[39m, \u001b[38;5;241m0.5\u001b[39m]):\n\u001b[1;32m 8\u001b[0m az\u001b[38;5;241m.\u001b[39mplot_hdi(\n\u001b[1;32m 9\u001b[0m time_train[time_train \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m T1 \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m24\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m7\u001b[39m],\n\u001b[0;32m---> 10\u001b[0m \u001b[43midata_train\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mposterior_predictive\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_series\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mi\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m 11\u001b[0m :, :, time_train \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m T1 \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m24\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m7\u001b[39m\n\u001b[1;32m 12\u001b[0m ],\n\u001b[1;32m 13\u001b[0m hdi_prob\u001b[38;5;241m=\u001b[39mhdi_prob,\n\u001b[1;32m 14\u001b[0m color\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mC0\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 15\u001b[0m fill_kwargs\u001b[38;5;241m=\u001b[39m{\n\u001b[1;32m 16\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124malpha\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0.3\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m0.2\u001b[39m \u001b[38;5;241m*\u001b[39m j,\n\u001b[1;32m 17\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlabel\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mhdi_prob\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m100\u001b[39m\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.0f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m% HDI (train)\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 18\u001b[0m },\n\u001b[1;32m 19\u001b[0m smooth\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 20\u001b[0m ax\u001b[38;5;241m=\u001b[39max,\n\u001b[1;32m 21\u001b[0m )\n\u001b[1;32m 22\u001b[0m az\u001b[38;5;241m.\u001b[39mplot_hdi(\n\u001b[1;32m 23\u001b[0m time[time \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m T1],\n\u001b[1;32m 24\u001b[0m idata_test[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mposterior_predictive\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobs\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39msel(n_series\u001b[38;5;241m=\u001b[39mi)[:, :, time \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m T1],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 32\u001b[0m ax\u001b[38;5;241m=\u001b[39max,\n\u001b[1;32m 33\u001b[0m )\n\u001b[1;32m 34\u001b[0m ax\u001b[38;5;241m.\u001b[39maxvline(christmas_index, color\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mC2\u001b[39m\u001b[38;5;124m\"\u001b[39m, lw\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m20\u001b[39m, alpha\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.2\u001b[39m, label\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mChristmas\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/xarray/core/dataarray.py:1670\u001b[0m, in \u001b[0;36mDataArray.sel\u001b[0;34m(self, indexers, method, tolerance, drop, **indexers_kwargs)\u001b[0m\n\u001b[1;32m 1554\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msel\u001b[39m(\n\u001b[1;32m 1555\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1556\u001b[0m indexers: Mapping[Any, Any] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mindexers_kwargs: Any,\n\u001b[1;32m 1561\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Self:\n\u001b[1;32m 1562\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Return a new DataArray whose data is given by selecting index\u001b[39;00m\n\u001b[1;32m 1563\u001b[0m \u001b[38;5;124;03m labels along the specified dimension(s).\u001b[39;00m\n\u001b[1;32m 1564\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1668\u001b[0m \u001b[38;5;124;03m Dimensions without coordinates: points\u001b[39;00m\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1670\u001b[0m ds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_to_temp_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1671\u001b[0m \u001b[43m \u001b[49m\u001b[43mindexers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindexers\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1672\u001b[0m \u001b[43m \u001b[49m\u001b[43mdrop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdrop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1673\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1674\u001b[0m \u001b[43m \u001b[49m\u001b[43mtolerance\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtolerance\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1675\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mindexers_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1676\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1677\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_from_temp_dataset(ds)\n", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/xarray/core/dataset.py:3184\u001b[0m, in \u001b[0;36mDataset.sel\u001b[0;34m(self, indexers, method, tolerance, drop, **indexers_kwargs)\u001b[0m\n\u001b[1;32m 3116\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Returns a new dataset with each array indexed by tick labels\u001b[39;00m\n\u001b[1;32m 3117\u001b[0m \u001b[38;5;124;03malong the specified dimension(s).\u001b[39;00m\n\u001b[1;32m 3118\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3181\u001b[0m \n\u001b[1;32m 3182\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3183\u001b[0m indexers \u001b[38;5;241m=\u001b[39m either_dict_or_kwargs(indexers, indexers_kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msel\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 3184\u001b[0m query_results \u001b[38;5;241m=\u001b[39m \u001b[43mmap_index_queries\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3185\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindexers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtolerance\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtolerance\u001b[49m\n\u001b[1;32m 3186\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3188\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m drop:\n\u001b[1;32m 3189\u001b[0m no_scalar_variables \u001b[38;5;241m=\u001b[39m {}\n", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/xarray/core/indexing.py:185\u001b[0m, in \u001b[0;36mmap_index_queries\u001b[0;34m(obj, indexers, method, tolerance, **indexers_kwargs)\u001b[0m\n\u001b[1;32m 182\u001b[0m options \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmethod\u001b[39m\u001b[38;5;124m\"\u001b[39m: method, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtolerance\u001b[39m\u001b[38;5;124m\"\u001b[39m: tolerance}\n\u001b[1;32m 184\u001b[0m indexers \u001b[38;5;241m=\u001b[39m either_dict_or_kwargs(indexers, indexers_kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmap_index_queries\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 185\u001b[0m grouped_indexers \u001b[38;5;241m=\u001b[39m \u001b[43mgroup_indexers_by_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 187\u001b[0m results \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 188\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m index, labels \u001b[38;5;129;01min\u001b[39;00m grouped_indexers:\n", + "File \u001b[0;32m~/Documents/website_projects/.pixi/envs/default/lib/python3.11/site-packages/xarray/core/indexing.py:146\u001b[0m, in \u001b[0;36mgroup_indexers_by_index\u001b[0;34m(obj, indexers, options)\u001b[0m\n\u001b[1;32m 144\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno index found for coordinate \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 145\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m key \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m obj\u001b[38;5;241m.\u001b[39mdims:\n\u001b[0;32m--> 146\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\n\u001b[1;32m 147\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m is not a valid dimension or coordinate for \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mobj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m with dimensions \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mobj\u001b[38;5;241m.\u001b[39mdims\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 149\u001b[0m )\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(options):\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 152\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcannot supply selection options \u001b[39m\u001b[38;5;132;01m{\u001b[39;00moptions\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m for dimension \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 153\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mthat has no associated coordinate or index\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 154\u001b[0m )\n", + "\u001b[0;31mKeyError\u001b[0m: \"'n_series' is not a valid dimension or coordinate for Dataset with dimensions FrozenMappingWarningOnValuesAccess({'chain': 1, 'draw': 100, 'n_series_origin': 50, 'n_series_destin': 50, 'time_train': 2160})\"" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC88AAA4nCAYAAADbiOCpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzde5CV9Zkn8Oc0fcFuGFrsBkYuEiAaILpBvMYYE2BKSrMuY3YhWdciJkRC1FETd8nUDIo7bmKyJZUdNGQdEzYVZyeIcTSOrkzCrSaGlesuBjRZEGhgpZFLI3RD09Bn/0jNu5xWsJs+5zS+5/Opsup93vO7PPLXU9bXl0w2m80GAAAAAAAAAAAAAACkWFlPNwAAAAAAAAAAAAAAAIUmPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQeuU93cC5oLm5OdauXRuNjY3R1NQU/fv3j8GDB8f48eOjsrKyp9sDAAAAAAAAAAAAAKCbihaeb25ujs2bN8fGjRtj48aN8frrr8fu3buT3wcPHhzLli0rVjsREbF3796YN29eLFmyJFpaWt7ze79+/eKWW26J++67L/r06VPU3gAAAAAAAAAAAAAAyJ9MNpvNFvKChQsXxnPPPRdbtmyJ9vb2064rdnj+17/+dTzwwANx8ODBD1w7dOjQmD9/fowePboInQEAAAAAAAAAAAAAkG8F//L8mjVr4ve//32hr+mSTZs2xd133x1Hjx5N3g0YMCA+/elPR11dXbz99tuxfPnyePfddyMiYufOnfHVr341nn322Rg0aFBPtQ0AAAAAAAAAAAAAwFkqeHj+/VRXV8fYsWNj06ZN0dLSUtS7jx07FnfddVdOcP7LX/5y3H///VFZWZm8O3LkSMyZMydefvnliIh455134r777ouf/exnRe0XAAAAAAAAAAAAAIDuK3h4vqqqKi677LK49NJL4+Mf/3hceumlMXLkyCgrK4sJEyYUPTz/9NNPx9tvv53Un//852P27NnvWdenT5947LHH4uDBg7Fq1aqIiNiwYUP86le/ikmTJhWtXwAAAAAAAAAAAAAAui+TzWazPXX5hAkTYvfu3RERMXjw4Fi2bFlB72tra4vrr78+Dh48GBERffv2jaVLl0a/fv1Ou2fHjh0xefLkaG9vj4iIsWPHxnPPPVfQPgEAAAAAAAAAAAAAyK+ynm6gmF577bUkOB8R8bnPfe6MwfmIiIsuuig++clPJvWmTZti586dBesRAAAAAAAAAAAAAID8K6nwfMcv2994442d2jd58uSceunSpXnrCQAAAAAAAAAAAACAwiup8PzatWuT5169esVll13WqX2XX355Tr1mzZq89gUAAAAAAAAAAAAAQGGVTHi+vb09tm/fntQXXXRR1NTUdGrviBEjonfv3km9devWfLcHAAAAAAAAAAAAAEABlUx4fvfu3dHa2prUF154Yaf3ZjKZGDRoUFLv3Lkz2tra8tofAAAAAAAAAAAAAACFUzLh+cbGxpz61DB8ZwwcODB5PnHiROzfvz8vfQEAAAAAAAAAAAAAUHglE55vbm7Oqaurq7u0v6am5oznAQAAAAAAAAAAAABw7iqZ8HxLS0tOXVVV1aX9Hdd3PA8AAAAAAAAAAAAAgHNXyYTnW1tbc+qKioou7a+srDzjeQAAAAAAAAAAAAAAnLvKe7qBYun45fi2trYu7T9+/PgZz+uKQ4cORTabPev9AAAfBplMJvr16xcR5h8AoDSYfwCAUmP+AQBKjfkHACg1p84/aVEy4fnq6uqcuqtfju+4vuN5XZHNZg3PAEBJMf8AAKXG/AMAlBrzDwBQasw/AAAfTmU93UCx1NTU5NTNzc1d2t9xfcfzAAAAAAAAAAAAAAA4d5VMeH7gwIE5dWNjY5f279mzJ3kuLy+PCy64IC99AQAAAAAAAAAAAABQeCUTnh88eHD07t07qXfv3t3pvdlsNic8P2zYsKioqMhrfwAAAAAAAAAAAAAAFE7JhOfLyspi+PDhSd3Q0BDNzc2d2rt169ZobW1N6hEjRuS7PQAAAAAAAAAAAAAACqhkwvMREePHj0+eT548GRs3buzUvg0bNuTUV155ZV77AgAAAAAAAAAAAACgsEoqPD9x4sSc+pVXXunUvo7rOp4DAAAAAAAAAAAAAMC5raTC81dddVX0798/qV966aV49913z7hnx44d8Zvf/Capx44dG0OHDi1YjwAAAAAAAAAAAAAA5N+HOjy/a9euuOSSS5J/JkyYcMb1FRUVMWPGjKQ+fPhwPProo6dd397eHg899FC0t7cn777+9a93v3EAAAAAAAAAAAAAAIrqQx2ePxu33XZb/PEf/3FS//znP4/vfve7cfz48Zx1R44ciW9+85uxatWq5N24ceNi0qRJResVAAAAAAAAAAAAAID8KC/0Bbt3744/+ZM/ed/fTp48mbNuzJgx77vuv/23/xZXXXVVXvrp3bt3PPHEE3HbbbfF0aNHIyLixz/+cfzDP/xD3HDDDXHBBRfEnj17YtmyZfHuu+8m++rr6+P73/9+XnoAAAAAAAAAAAAAAKC4Ch6ez2azOSH5Mzndumw2m8+WYuzYsTF//vx44IEHoqmpKSIi9u7dG4sXL37f9UOGDIn58+fHoEGD8toHAAAAAAAAAAAAAADFUdbTDfSU66+/Pl588cWYMmVKnHfeee+7pl+/fnH77bfHCy+8cNqv4gMAAAAAAAAAAAAAcO7LZPP9WfcPoebm5li7dm28/fbbcejQoejfv38MHjw4rrjiiqisrMz7fU1NTXn/mj4AwLkmk8lEbW1tRJh/AIDSYP4BAEqN+QcAKDXmHwCg1Jw6/6RFeU83cC6oqamJG264oafbAAAAAAAAAAAAAACgQMp6ugEAAAAAAAAAAAAAACg04XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABSr7wnLm1qaor169fHnj174siRIzFgwIAYMmRIjBs3Lnr16lXUXtrb22PLli3xxhtvxMGDB+Po0aNRU1MTF1xwQYwZMyaGDx8emUymqD0BAAAAAAAAAAAAAJBfRQ3Pb9u2LR577LFYsWJFtLW1vef3+vr6mDZtWsycOTMqKysL2svhw4fjqaeeip///OfxzjvvnHbd4MGD4wtf+EJMnz49qqqqCtoTAAAAAAAAAAAAAACFkclms9liXPTCCy/E3Llzo6Wl5QPXjhkzJubPnx9DhgwpSC8bNmyIe++9NxobGzu95yMf+Ug88cQTMXLkyG7f39TUFEX6YwcA6DGZTCZqa2sjwvwDAJQG8w8AUGrMPwBAqTH/AACl5tT5Jy2KEp5fuXJlfO1rX4v29vbk3fDhw+Pqq6+O2traaGhoiOXLl8exY8eS30eNGhWLFi2KPn365LWXN998M2677bY4cuRI8i6TycT48eNj7Nix0bdv3zh06FD89re/jQ0bNuTsra+vj2eeeSYuvPDCbvVgeAYASoH/eAgAlBrzDwBQasw/AECpMf8AAKVGeP4s7N27NyZPnhzNzc1/uDCTidmzZ8f06dOjrKwsWXfgwIG49957Y/Xq1cm7m2++OebNm5e3XrLZbEydOjU2btyYvLv44ovjsccei4svvvg96zdv3hzf+MY3Ytu2bcm7SZMmxRNPPNGtPgzPAEAp8B8PAYBSY/4BAEqN+QcAKDXmHwCg1KQxPF/2wUu6Z8GCBUlwPiLinnvuiTvuuCMnOB8R0b9//3jqqadi5MiRybuXX345Nm/enLdeNm7cmBOc79evX/z4xz9+3+B8RMSYMWPiJz/5SfTt2zd5t3Tp0mhsbMxbTwAAAAAAAAAAAAAAFF5Bw/P79u2LxYsXJ/WwYcPizjvvPO36qqqqmDNnTlJns9lYsGBB3vpZtWpVTj116tSor68/456BAwfGv/k3/yanp9deey1vPQEAAAAAAAAAAAAAUHgFDc8vXbo02traknrq1KlRUVFxxj3XXnttjBgxIqlXrlwZLS0teemn4xfjP/GJT3Rq3+WXX55T7927Ny/9AAAAAAAAAAAAAABQHAUNzy9btiynnjx5cqf23Xjjjclza2trvPrqq3npp729Pafu3bt3p/add955OXUmk8lLPwAAAAAAAAAAAAAAFEdBw/Pr1q1Lnuvq6mLo0KGd2jdu3Lices2aNXnpZ8iQITn122+/3al9u3fvzqkvuuiivPQDAAAAAAAAAAAAAEBxFCw839jYGIcPH07q0aNHd3rvmDFjcuqtW7fmpafrr78+p/4f/+N/dGrfyy+/nDxXV1fH1VdfnZd+AAAAAAAAAAAAAAAojoKF5996662c+sILL+z03rq6uqioqEjqbdu25aWnj33sY/GZz3wmqV999dX4u7/7uzPu+clPfhL/83/+z6S+4447om/fvnnpBwAAAAAAAAAAAACA4ijol+dPNWjQoE7vzWQyMXDgwNOe1R1/9Vd/FUOHDk3quXPnxje+8Y147bXX4siRI5HNZuPw4cOxatWquOeee+Lb3/52svazn/1szJo1K2+9AAAAAAAAAAAAAABQHOWFOrilpSWnrq6u7tL+mpqa5PnEiRPR2toaVVVV3e5rwIABsWjRopg7d2784z/+Y0REvPTSS/HSSy+ddk+fPn1ixowZceedd0avXr263UMmk+n2GQAA57pTZx7zDwBQCsw/AECpMf8AAKXG/AMAlJo0zjxFC893NfjecX1zc3NewvMRERdccEHMnz8/Vq5cGQ8++GDs2bPntGuHDRsWDz74YFx//fV5uTsiol+/fnk7CwDgw8D8AwCUGvMPAFBqzD8AQKkx/wAAfDiVFerg1tbWnLqioqJL+ysrK894Xnc0NjbGfffdFzNnzjxjcD4ioqGhIWbMmBFf+MIXYsuWLXnrAQAAAAAAAAAAAACA4inYl+c7fiW+ra2tS/uPHz9+xvPO1ptvvhlf+tKX4uDBgxHxh79O4HOf+1zceuut8bGPfSz69u0bhw8fjs2bN8ff//3fx0svvRTZbDY2bNgQ//pf/+v4m7/5m7jyyiu71cOhQ4cim83m418HAOCclclkki9umH8AgFJg/gEASo35BwAoNeYfAKDUnDr/pEXBwvPV1dU5dVe/HN9xfU1NTbd7OnToUHz1q19NgvMVFRUxf/78+OxnP5uzrn///vGpT30qPvWpT8XNN98cf/ZnfxZtbW1x9OjRuPvuu+Mf/uEfor6+/qz7yGazhmcAoKSYfwCAUmP+AQBKjfkHACg15h8AgA+nskId3DE839zc3KX9p64vLy/Py5fnf/jDH8bevXuT+r777ntPcL6jCRMmxL333pvUTU1NsWDBgm73AgAAAAAAAAAAAABA8RQsPD9w4MCcurGxsdN7s9lszvqOZ52NbDYbzz//fFJXV1fHv/t3/65Te2+//fac/xngxRdfjPb29m73BAAAAAAAAAAAAABAcRQsPD9y5Micevfu3Z3eu2/fvmhra0vqESNGdLufhoaGOHDgQFJfdtll0bt3707t7d27d1x66aVJ/e6778aOHTu63RMAAAAAAAAAAAAAAMVRsPD8gAEDom/fvkn9xhtvdHrv5s2bc+p8hOf379+fU9fV1XVpf319fU598ODBbvcEAAAAAAAAAAAAAEBxFCw8HxExfvz45Hn//v3R0NDQqX3r16/Pqa+88spu91JVVZVTt7a2dmn/0aNHc+rq6upu9wQAAAAAAAAAAAAAQHEUNDw/ceLEnPqVV17p1L4lS5Ykz1VVVXHdddd1u5cLLrggp966dWuX9ndc379//273BAAAAAAAAAAAAABAcRQ0PD9hwoSoqKhI6sWLF0dbW9sZ96xatSq2bduW1DfccENevvI+aNCgGDBgQFK/9dZb8eabb3Zq7+uvvx7bt29P6sGDB+ecBQAAAAAAAAAAAADAua2g4fm6urqYOnVqUjc0NMSTTz552vWtra3xyCOPJHUmk4lZs2addv2uXbvikksuSf6ZMGHCGfv57Gc/m1PPnTs3jh8/fsY9ra2t8fDDD+e8+6B7AAAAAAAAAAAAAAA4txQ0PB8RMXPmzKipqUnq+fPnx8KFC6O9vT1n3YEDB2LGjBmxZcuW5N1NN90UY8aMyVsvd955Z86X8Dds2BBf+cpXoqGh4X3Xv/XWWzF9+vR4/fXXk3dVVVUxY8aMvPUEAAAAAAAAAAAAAEDhZbLZbLbQl6xYsSJmzZqVE5gfPnx4XHPNNVFbWxs7duyI5cuXx7Fjx5LfR40aFYsWLYo+ffqc9txdu3bFxIkTk3rw4MGxbNmyM/ayaNGiePDBB3Pe9erVK8aPHx9jxoyJPn36xOHDh2PTpk2xfv3694T8v/vd78aUKVM68699Wk1NTVGEP3YAgB6VyWSitrY2Isw/AEBpMP8AAKXG/AMAlBrzDwBQak6df9KivBiXfOYzn4nvfOc7MXfu3Dh69GhERGzfvj22b9/+vutHjx4djz/++BmD82dr2rRpERHx7W9/Ownrnzx5MlavXh2rV68+7b7q6uqYM2dOt4PzAAAAAAAAAAAAAAAUX1mxLpoyZUo899xzMWnSpKioqHjfNfX19XHXXXfFM888E0OGDClYL9OmTYtf/OIX8cUvfjFqamrOuLZPnz5x2223xS9+8Yu49dZbC9YTAAAAAAAAAAAAAACFk8n2wN8fdPDgwVi/fn3s2bMnmpubo66uLoYOHRqXX3559OrVq6i9nDx5Mn73u9/F73//+2hqaoqWlpaorq6O2trauOSSS+Liiy/Oe0/+2iYAoBT4aysBgFJj/gEASo35BwAoNeYfAKDUnDr/pEV5T1x6/vnnx8SJE3vi6vfo1atXjBkzJsaMGdPTrQAAAAAAAAAAAAAAUCBlPd0AAAAAAAAAAAAAAAAUmvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqVfeE5c2NTXF+vXrY8+ePXHkyJEYMGBADBkyJMaNGxe9evXqiZYiImL//v3xv//3/46dO3dGc3NzVFZWRv/+/WPYsGExevToqKmp6bHeAAAAAAAAAAAAAAA4e0UNz2/bti0ee+yxWLFiRbS1tb3n9/r6+pg2bVrMnDkzKisri9bX0qVLY+HChbF27drIZrPvu6asrCzGjh0bt99+e/yrf/WvitYbAAAAAAAAAAAAAADdV1asi1544YW49dZb45e//OX7BucjIt555514/PHHY9q0abFr166C93Tw4MGYOXNmfP3rX481a9acNjgfEdHe3h6vv/56rFixouB9AQAAAAAAAAAAAACQX0X58vzKlSvjW9/6VrS3tyfvhg8fHldffXXU1tZGQ0NDLF++PI4dOxYREZs3b46ZM2fGokWLok+fPgXpqbGxMaZPnx7btm3LeX/xxRfHZZddFnV1dXHy5MnYu3dv/Pa3v42tW7cWpA8AAAAAAAAAAAAAAAqv4OH5vXv3xv33358E5zOZTMyePTumT58eZWX//8P3Bw4ciHvvvTdWr14dERFbtmyJBx98MObNm5f3nlpbW+POO+/MCc5fccUV8eCDD8Yll1zyvnt27twZL7zwQjQ1NeW9HwAAAAAAAAAAAAAACqvsg5d0z4IFC6K5uTmp77nnnrjjjjtygvMREf3794+nnnoqRo4cmbx7+eWXY/PmzXnv6Qc/+EG8+eabSX3LLbfE008/fdrgfETE0KFD4+67746//Mu/zHs/AAAAAAAAAAAAAAAUVkHD8/v27YvFixcn9bBhw+LOO+887fqqqqqYM2dOUmez2ViwYEFee9qyZUv86Ec/SuqxY8fGd77znchkMnm9BwAAAAAAAAAAAACAc0dBw/NLly6Ntra2pJ46dWpUVFSccc+1114bI0aMSOqVK1dGS0tL3npauHBhTk9/8Rd/EeXl5Xk7HwAAAAAAAAAAAACAc09Bw/PLli3LqSdPntypfTfeeGPy3NraGq+++mpe+mlubo6XX345qUePHh3jx4/Py9kAAAAAAAAAAAAAAJy7ChqeX7duXfJcV1cXQ4cO7dS+cePG5dRr1qzJSz/Lly/P+Yr9zTffnJdzAQAAAAAAAAAAAAA4txUsPN/Y2BiHDx9O6tGjR3d675gxY3LqrVu35qWn//W//ldOfcUVV+TlXAAAAAAAAAAAAAAAzm3lhTr4rbfeyqkvvPDCTu+tq6uLioqKaGtri4iIbdu25aWn3/72t8lzeXl5EuhvbGyMF154IZYtWxa7du2KI0eOxPnnnx9DhgyJa6+9Nv7lv/yXnf5qPgAAAAAAAAAAAAAA556ChecbGxtz6kGDBnV6byaTiYEDB8auXbve96yzdeoX7Ovr66N3797x3//7f4///J//c7S0tOSsPXr0aPzf//t/Y/Xq1fGDH/wgvvCFL8R/+A//ISorK/PSCwAAAAAAAAAAAAAAxVNWqIM7htGrq6u7tL+mpiZ5PnHiRLS2tnarn/b29jh8+HBS19fXx/e///14+OGH39NrR21tbfHTn/40pk+fHkeOHOlWHwAAAAAAAAAAAAAAFF/BvjzfMZBeVVXVpf0d1zc3N3f5jFMdPnw4stlsUm/bti02btwYERHl5eUxbdq0mDJlSowcOTIymUy89dZb8fzzz8ff/d3fxYkTJyIiYv369fEXf/EX8V/+y3856z4i/vBlfQCAtDt15jH/AAClwPwDAJQa8w8AUGrMPwBAqUnjzFOw8HzHL8VXVFR0aX9lZeUZz+uqjmH+f/4KfVVVVSxYsCCuu+66nN8//vGPx8c//vGYOHFifO1rX4tjx45FRMQrr7wSy5YtiwkTJpx1L/369TvrvQAAH0bmHwCg1Jh/AIBSY/4BAEqN+QcA4MOprFAHd/xKfFtbW5f2Hz9+/Izndbeff3bfffe9Jzh/qmuvvTa+8Y1v5Lz70Y9+1K1eAAAAAAAAAAAAAAAoroJ9eb66ujqn7uqX4zuur6mpyWs/EX/4P0Bvu+22D9z7xS9+MX74wx/GgQMHIiJi3bp10dTUFLW1tWfVy6FDhyKbzZ7VXgCAD4tMJpN8ccP8AwCUAvMPAFBqzD8AQKkx/wAApebU+Sctihaeb25u7tL+U9eXl5d3+8vzvXv3jvLy8jhx4kTy7pOf/GSnzq2srIxPfepT8Ytf/CIiIrLZbGzYsCE++9nPnlUv2WzW8AwAlBTzDwBQasw/AECpMf8AAKXG/AMA8OFUVqiDBw4cmFM3NjZ2em82m81Z3/GsfPX00Y9+tNN7L7744py6K/8+AAAAAAAAAAAAAAD0rIKF50eOHJlT7969u9N79+3bF21tbUk9YsSIgvTUlb9GoOPaQ4cO5aUnAAAAAAAAAAAAAAAKr2Dh+QEDBkTfvn2T+o033uj03s2bN+fU+QrPjxo1Kqc+fvx4p/d2XFtVVZWXngAAAAAAAAAAAAAAKLyChecjIsaPH58879+/PxoaGjq1b/369Tn1lVdemZd+rrrqqpy6sbGx03v37NmTU59//vl56QkAAAAAAAAAAAAAgMIraHh+4sSJOfUrr7zSqX1LlixJnquqquK6667LSz/XXXddVFdXJ3XHkP6ZbNiwIaceM2ZMXnoCAAAAAAAAAAAAAKDwChqenzBhQlRUVCT14sWLo62t7Yx7Vq1aFdu2bUvqG264ISfw3h2VlZUxadKkpN64cWP8/ve//8B9W7dujXXr1iX1gAED4qMf/WheegIAAAAAAAAAAAAAoPAKGp6vq6uLqVOnJnVDQ0M8+eSTp13f2toajzzySFJnMpmYNWvWadfv2rUrLrnkkuSfCRMmfGBPX//616O8vDyp586de8ZA/4kTJ2Lu3LmRzWaTd7fffvsH3gMAAAAAAAAAAAAAwLmjoOH5iIiZM2dGTU1NUs+fPz8WLlwY7e3tOesOHDgQM2bMiC1btiTvbrrpphgzZkxe+/nIRz4S06ZNS+p169bFrFmzYu/eve9Z+84778Rdd90Vq1evTt4NHjw4/u2//bd57QkAAAAAAAAAAAAAgMLKZE/9pHqBrFixImbNmpUTmB8+fHhcc801UVtbGzt27Ijly5fHsWPHkt9HjRoVixYtij59+pz23F27dsXEiROTevDgwbFs2bIP7Of48ePxpS99KdatW5e86927d1x33XUxcuTIiIh466234tVXX42jR48ma84777z427/92xg7dmzn/sVPo6mpKYrwxw4A0KMymUzU1tZGhPkHACgN5h8AoNSYfwCAUmP+AQBKzanzT1oUJTwfEfH888/H3Llzc8LopzN69Oh4/PHHY8iQIWdcd7bh+Yg/DLDf+MY34tVXX+3U+vr6+liwYEFceumlnVr/QXcbngGAtPMfDwGAUmP+AQBKjfkHACg15h8AoNSkMTxfVqyLpkyZEs8991xMmjQpKioq3ndNfX193HXXXfHMM898YHC+u2pra+NHP/pRPPzwwzFq1Kgzrps5c2a89NJLeQnOAwAAAAAAAAAAAABQfEX78vypDh48GOvXr489e/ZEc3Nz1NXVxdChQ+Pyyy+PXr16FbudiIh48803Y+vWrdHY2BgnT56M888/Pz760Y/GpZdeGmVl+f1/DPyfpwBAKfDlDQCg1Jh/AIBSY/4BAEqN+QcAKDVp/PJ8eU9cev7558fEiRN74urT+tjHPhYf+9jHeroNAAAAAAAAAAAAAAAKIL+fVAcAAAAAAAAAAAAAgHOQ8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqlffEpU1NTbF+/frYs2dPHDlyJAYMGBBDhgyJcePGRa9evXqiJQAAAAAAAAAAAAAAUqyo4flt27bFY489FitWrIi2trb3/F5fXx/Tpk2LmTNnRmVlZTFby7Fw4cJ49NFHc95dddVV8dOf/rSHOgIAAAAAAAAAAAAAoDvKinXRCy+8ELfeemv88pe/fN/gfETEO++8E48//nhMmzYtdu3aVazWcuzatSv++q//ukfuBgAAAAAAAAAAAACgMIry5fmVK1fGt771rWhvb0/eDR8+PK6++uqora2NhoaGWL58eRw7diwiIjZv3hwzZ86MRYsWRZ8+fYrRYuKhhx6KlpaWot4JAAAAAAAAAAAAAEBhFTw8v3fv3rj//vuT4Hwmk4nZs2fH9OnTo6zs/3/4/sCBA3HvvffG6tWrIyJiy5Yt8eCDD8a8efMK3WLi+eefj1//+tcREVFfXx/vvPNO0e4GAAAAAAAAAAAAAKBwyj54SfcsWLAgmpubk/qee+6JO+64Iyc4HxHRv3//eOqpp2LkyJHJu5dffjk2b95c6BYj4g/h/UcffTQi/hDw//M///Oi3AsAAAAAAAAAAAAAQOEVNDy/b9++WLx4cVIPGzYs7rzzztOur6qqijlz5iR1NpuNBQsWFLLFxLe//e04ePBgRERMmzYt/sW/+BdFuRcAAAAAAAAAAAAAgMIraHh+6dKl0dbWltRTp06NioqKM+659tprY8SIEUm9cuXKaGlpKViPERH/9E//FC+++GJERNTX18c3v/nNgt4HAAAAAAAAAAAAAEBxFTQ8v2zZspx68uTJndp34403Js+tra3x6quv5rWvU7W0tMRDDz2U1H/+538ef/RHf1Sw+wAAAAAAAAAAAAAAKL6ChufXrVuXPNfV1cXQoUM7tW/cuHE59Zo1a/La16m+//3vx+7duyMi4lOf+lTcfPPNBbsLAAAAAAAAAAAAAICeUbDwfGNjYxw+fDipR48e3em9Y8aMyam3bt2at75OtXHjxnj66acjIqKqqirnC/QAAAAAAAAAAAAAAKRHwcLzb731Vk594YUXdnpvXV1dVFRUJPW2bdvy1tc/O3HiRMyZMydOnjwZERGzZs2KYcOG5f0eAAAAAAAAAAAAAAB6XkG/PH+qQYMGdXpvJpOJgQMHnvasfHjqqafizTffjIiIkSNHxle+8pW83wEAAAAAAAAAAAAAwLmhvFAHt7S05NTV1dVd2l9TU5M8nzhxIlpbW6OqqiovvW3fvj1+8IMfRMQfgvoPP/xwVFZW5uXszshkMkW7CwCgp5w685h/AIBSYP4BAEqN+QcAKDXmHwCg1KRx5ilaeL6rwfeO65ubm/MSns9mszFnzpxobW2NiIhbb701rrzyym6f2xX9+vUr6n0AAD3N/AMAlBrzDwBQasw/AECpMf8AAHw4lRXq4H8Op/+zioqKLu3v+CX4juedrWeffTZWr14dERHnn39+/Pt//+/zci4AAAAAAAAAAAAAAOeugn15vuNX4tva2rq0//jx42c872y888478b3vfS+pZ8+eHeeff363z+2qQ4cORTabLfq9AADFlMlkki9umH8AgFJg/gEASo35BwAoNeYfAKDUnDr/pEXBwvPV1dU5dVe/HN9xfU1NTbd7+qu/+qt49913IyLiqquuij/90z/t9plnI5vNGp4BgJJi/gEASo35BwAoNeYfAKDUmH8AAD6cygp1cMfwfHNzc5f2n7q+vLy821+eX7p0aSxZsiQiIioqKuLhhx/u1nkAAAAAAAAAAAAAAHx4FCw8P3DgwJy6sbGx03uz2WzO+o5nnY1HH300eb7zzjtjxIgR3T4TAAAAAAAAAAAAAIAPh/JCHTxy5Micevfu3Z3eu2/fvmhra0vqfATdDx48mDz/8Ic/jB/+8Idd2r969eoYM2ZMUl955ZXxk5/8pNt9AQAAAAAAAAAAAABQeAULzw8YMCD69u0bhw8fjoiIN954o9N7N2/enFPn+yvxJ0+e7Pa+9vb2fLUDAAAAAAAAAAAAAECBlRXy8PHjxyfP+/fvj4aGhk7tW79+fU595ZVX5rUvAAAAAAAAAAAAAABKS8G+PB8RMXHixFixYkVSv/LKK3HnnXd+4L4lS5Ykz1VVVXHdddd1u5e1a9d2af2uXbti4sSJSX3VVVfFT3/60273AQAAAAAAAAAAAABA8RX0y/MTJkyIioqKpF68eHG0tbWdcc+qVati27ZtSX3DDTdEdXV1wXoEAAAAAAAAAAAAACD9Chqer6uri6lTpyZ1Q0NDPPnkk6dd39raGo888khSZzKZmDVr1mnX79q1Ky655JLknwkTJuSncQAAAAAAAAAAAAAAUqWg4fmIiJkzZ0ZNTU1Sz58/PxYuXBjt7e056w4cOBAzZsyILVu2JO9uuummGDNmTKFbBAAAAAAAAAAAAAAg5coLfcHAgQNj3rx5MWvWrGhvb49sNhuPPvpo/OxnP4trrrkmamtrY8eOHbF8+fI4duxYsm/UqFHxH//jfyx0ewAAAAAAAAAAAAAAlICCh+cjIj7zmc/Ed77znZg7d24cPXo0IiK2b98e27dvf9/1o0ePjscffzz69OlTjPYAAAAAAAAAAAAAAEi5smJdNGXKlHjuuedi0qRJUVFR8b5r6uvr46677opnnnkmhgwZUqzWAAAAAAAAAAAAAABIuUw2m80W+9KDBw/G+vXrY8+ePdHc3Bx1dXUxdOjQuPzyy6NXr17Fbqfompqaogf+2AEAiiqTyURtbW1EmH8AgNJg/gEASo35BwAoNeYfAKDUnDr/pEV5T1x6/vnnx8SJE3viagAAAAAAAAAAAAAASlBZTzcAAAAAAAAAAAAAAACFJjwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6pX3xKVNTU2xfv362LNnTxw5ciQGDBgQQ4YMiXHjxkWvXr2K1seRI0fi//yf/xNvvfVWNDU1RVtbW/zRH/1RDBo0KD7xiU9E//79i9YLAAAAAAAAAAAAAACFU9Tw/LZt2+Kxxx6LFStWRFtb23t+r6+vj2nTpsXMmTOjsrKyID28/vrr8Y//+I/xm9/8JjZv3hzt7e2nXXvZZZfF9OnT4+abb45MJlOQfgAAAAAAAAAAAAAAKLxMNpvNFuOiF154IebOnRstLS0fuHbMmDExf/78GDJkSF57uOOOO+I3v/lNl/dde+218b3vfS8GDBiQlz6ampqiSH/sAAA9JpPJRG1tbUSYfwCA0mD+AQBKjfkHACg15h8AoNScOv+kRVG+PL9y5cr41re+lfOV9+HDh8fVV18dtbW10dDQEMuXL49jx45FRMTmzZtj5syZsWjRoujTp0/e+jhw4MB73l144YXxiU98IgYMGBDV1dWxb9++WL16dWzfvj1Zs2rVqvjSl74Uf/u3fxvnn39+3voBAAAAAAAAAAAAAKA4Ch6e37t3b9x///1JcD6TycTs2bNj+vTpUVZWlqw7cOBA3HvvvbF69eqIiNiyZUs8+OCDMW/evLz3VFdXF3/6p38an//85+MjH/nIe37PZrOxZMmSePDBB+PQoUMREbF169Z46KGH4q//+q/z3g8AAAAAAAAAAAAAAIVV9sFLumfBggXR3Nyc1Pfcc0/ccccdOcH5iIj+/fvHU089FSNHjkzevfzyy7F58+a89dK/f//41re+FcuXL48HHnjgfYPzEX8I+E+ePDkWLlwY5513XvJ+yZIlsXHjxrz1AwAAAAAAAAAAAABAcRQ0PL9v375YvHhxUg8bNizuvPPO066vqqqKOXPmJHU2m40FCxbkrZ+/+Zu/iTvuuCMqKys7tX7s2LExffr0nHdLlizJWz8AAAAAAAAAAAAAABRHQcPzS5cujba2tqSeOnVqVFRUnHHPtddeGyNGjEjqlStXRktLS176KS8v7/Kem2++Oaf25XkAAAAAAAAAAAAAgA+fgobnly1bllNPnjy5U/tuvPHG5Lm1tTVeffXVvPbVFRdddFFOvX///h7qBAAAAAAAAAAAAACAs1XQ8Py6deuS57q6uhg6dGin9o0bNy6nXrNmTV776orm5uac+my+Xg8AAAAAAAAAAAAAQM8qWHi+sbExDh8+nNSjR4/u9N4xY8bk1Fu3bs1bX131u9/9LqceNGhQD3UCAAAAAAAAAAAAAMDZKlh4/q233sqpL7zwwk7vrauri4qKiqTetm1b3vrqql/84hc59TXXXNNDnQAAAAAAAAAAAAAAcLYK+uX5U3Xli+2ZTCYGDhx42rOKZfv27fHiiy8mda9eveJP/uRPeqQXAAAAAAAAAAAAAADOXnmhDm5pacmpq6uru7S/pqYmeT5x4kS0trZGVVVVXnrrjPb29vjLv/zLaGtrS95NmTIlhg4d2u2zM5lMt88AADjXnTrzmH8AgFJg/gEASo35BwAoNeYfAKDUpHHmKVp4vqvB947rm5ubixqef+KJJ2LNmjVJ3b9//3jggQfycna/fv3ycg4AwIeF+QcAKDXmHwCg1Jh/AIBSY/4BAPhwKivUwa2trTl1RUVFl/ZXVlae8bxC+tWvfhVPPPFEUmcymfhP/+k/Rf/+/YvWAwAAAAAAAAAAAAAA+VOwL893/Ep8W1tbl/YfP378jOcVyrp16+Kb3/xmZLPZ5N3dd98dEyZMyNsdhw4dyjkfACCNMplM8sUN8w8AUArMPwBAqTH/AAClxvwDAJSaU+eftChYeL66ujqn7uqX4zuur6mp6XZPH+R3v/tdfO1rX4tjx44l7774xS/G3Xffndd7stms4RkAKCnmHwCg1Jh/AIBSY/4BAEqN+QcA4MOprFAHdwzPNzc3d2n/qevLy8sL/uX5hoaG+MpXvhLvvvtu8u6mm26KBx98sKD3AgAAAAAAAAAAAABQeAULzw8cODCnbmxs7PTebDabs77jWfnW2NgYX/rSl+Kdd95J3l1//fXxve99L8rKCvZHBAAAAAAAAAAAAABAkRQsGT5y5Micevfu3Z3eu2/fvmhra0vqESNG5K2vjg4cOBB33HFHTn9XXHFFPP7441FRUVGwewEAAAAAAAAAAAAAKJ6ChecHDBgQffv2Teo33nij03s3b96cUxcqPH/kyJGYMWNGbN26NXk3duzY+K//9b9G7969C3InAAAAAAAAAAAAAADFV7DwfETE+PHjk+f9+/dHQ0NDp/atX78+p77yyivz2ldExLFjx2LmzJmxadOm5N2oUaPiqaeeij59+uT9PgAAAAAAAAAAAAAAek5Bw/MTJ07MqV955ZVO7VuyZEnyXFVVFdddd11e+2pra4s/+7M/i7Vr1ybvhg0bFj/+8Y+jf//+eb0LAAAAAAAAAAAAAICeV9Dw/IQJE6KioiKpFy9eHG1tbWfcs2rVqti2bVtS33DDDVFdXZ23ntrb22P27NmxcuXK5N2gQYNi4cKFMXDgwLzdAwAAAAAAAAAAAADAuaOg4fm6urqYOnVqUjc0NMSTTz552vWtra3xyCOPJHUmk4lZs2addv2uXbvikksuSf6ZMGHCB/Y0d+7ceOmll5L6ggsuiIULF8aQIUM+cC8AAAAAAAAAAAAAAB9OBQ3PR0TMnDkzampqknr+/PmxcOHCaG9vz1l34MCBmDFjRmzZsiV5d9NNN8WYMWPy1su8efNi0aJFSd2vX7/48Y9/HCNGjMjbHQAAAAAAAAAAAAAAnHsy2Ww2W+hLVqxYEbNmzcoJzA8fPjyuueaaqK2tjR07dsTy5cvj2LFjye+jRo2KRYsWRZ8+fU577q5du2LixIlJPXjw4Fi2bNlp119yySU5dSaTibKyrv//A5s3b+7ynlM1NTVFEf7YAQB6VCaTidra2ogw/wAApcH8AwCUGvMPAFBqzD8AQKk5df5Ji/JiXPKZz3wmvvOd78TcuXPj6NGjERGxffv22L59+/uuHz16dDz++ONnDM7nQzabjZMnTxb0DgAAAAAAAAAAAAAAel7XP7t+lqZMmRLPPfdcTJo0KSoqKt53TX19fdx1113xzDPPxJAhQ4rVGgAAAAAAAAAAAAAAKZfJ9sDfH3Tw4MFYv3597NmzJ5qbm6Ouri6GDh0al19+efTq1avY7RSdv7YJACgF/tpKAKDUmH8AgFJj/gEASo35BwAoNafOP2lR3hOXnn/++TFx4sSeuBoAAAAAAAAAAAAAgBJU1tMNAAAAAAAAAAAAAABAoQnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApF55T1za1NQU69evjz179sSRI0diwIABMWTIkBg3blz06tWr6P00NzfH2rVro7GxMZqamqJ///4xePDgGD9+fFRWVha9HwAAAAAAAAAAAAAA8quo4flt27bFY489FitWrIi2trb3/F5fXx/Tpk2LmTNnFiW0vnfv3pg3b14sWbIkWlpa3vN7v3794pZbbon77rsv+vTpU/B+AAAAAAAAAAAAAAAojLJiXfTCCy/ErbfeGr/85S/fNzgfEfHOO+/E448/HtOmTYtdu3YVtJ9f//rXccstt8Tf//3fv29wPiLi0KFD8dOf/jSmTJkSb7zxRkH7AQAAAAAAAAAAAACgcDLZbDZb6EtWrlwZX/va16K9vT15N3z48Lj66qujtrY2GhoaYvny5XHs2LHk91GjRsWiRYsK8sX3TZs2xW233RZHjx5N3g0YMCA+/elPR11dXbz99tuxfPnyePfdd5Pf6+vr49lnn41BgwZ1+/6mpqYowh87AECPymQyUVtbGxHmHwCgNJh/AIBSY/4BAEqN+QcAKDWnzj9pUfDw/N69e2Py5MnR3Nz8hwszmZg9e3ZMnz49ysr+/4fvDxw4EPfee2+sXr06eXfzzTfHvHnz8trPsWPHYvLkyfH2228n77785S/H/fffH5WVlcm7I0eOxJw5c+Lll19O3o0bNy5+9rOfdbsHwzMAUAr8x0MAoNSYfwCAUmP+AQBKjfkHACg1aQzPl33wku5ZsGBBEpyPiLjnnnvijjvuyAnOR0T0798/nnrqqRg5cmTy7uWXX47NmzfntZ+nn346Jzj/+c9/PmbPnp0TnI+I6NOnTzz22GNx7bXXJu82bNgQv/rVr/LaDwAAAAAAAAAAAAAAhVfQ8Py+ffti8eLFST1s2LC48847T7u+qqoq5syZk9TZbDYWLFiQt37a2triqaeeSuq+ffvG7NmzT7u+rKwsHn744Zyg/w9+8IO89QMAAAAAAAAAAAAAQHEUNDy/dOnSaGtrS+qpU6dGRUXFGfdce+21MWLEiKReuXJltLS05KWf1157LQ4ePJjUn/vc56Jfv35n3HPRRRfFJz/5yaTetGlT7Ny5My/9AAAAAAAAAAAAAABQHAUNzy9btiynnjx5cqf23Xjjjclza2trvPrqqwXp59R7zqRj30uXLs1LPwAAAAAAAAAAAAAAFEdBw/Pr1q1Lnuvq6mLo0KGd2jdu3Lices2aNXnpZ+3atclzr1694rLLLuvUvssvv7wg/QAAAAAAAAAAAAAAUBwFC883NjbG4cOHk3r06NGd3jtmzJiceuvWrd3up729PbZv357UF110UdTU1HRq74gRI6J379557QcAAAAAAAAAAAAAgOIpWHj+rbfeyqkvvPDCTu+tq6uLioqKpN62bVu3+9m9e3e0traeVT+ZTCYGDRqU1Dt37oy2trZu9wQAAAAAAAAAAAAAQHEU9Mvzpzo1fP5BMplMDBw48LRnFbufiMjp58SJE7F///5u9wQAAAAAAAAAAAAAQHGUF+rglpaWnLq6urpL+2tqapLnEydORGtra1RVVZ11P83NzXnr5/3O64pMJnPWewEAPixOnXnMPwBAKTD/AAClxvwDAJQa8w8AUGrSOPMULTzf1eB7x/XNzc3dCs/nu5+O53VFv379znovAMCHkfkHACg15h8AoNSYfwCAUmP+AQD4cCor1MGtra05dUVFRZf2V1ZWnvG8D3s/AAAAAAAAAAAAAAAUT8HC8x2/1N7W1tal/cePHz/jeR/2fgAAAAAAAAAAAAAAKJ6Cheerq6tz6q5+qb3j+pqamnOqn47nAQAAAAAAAAAAAABw7ipaeL65ublL+09dX15e3u0vvXcM33enn/c7DwAAAAAAAAAAAACAc1fBwvMDBw7MqRsbGzu9N5vN5qzveFax+4mI2LNnT/JcXl4eF1xwQbd7AgAAAAAAAAAAAACgOAoWnh85cmROvXv37k7v3bdvX7S1tSX1iBEjut3P4MGDo3fv3mfVTzabzQnPDxs2LCoqKrrdEwAAAAAAAAAAAAAAxVGw8PyAAQOib9++Sf3GG290eu/mzZtz6nyE58vKymL48OFJ3dDQEM3NzZ3au3Xr1mhtbc1rPwAAAAAAAAAAAAAAFE/BwvMREePHj0+e9+/fHw0NDZ3at379+pz6yiuvzHs/J0+ejI0bN3Zq34YNGwrSDwAAAAAAAAAAAAAAxVHQ8PzEiRNz6ldeeaVT+5YsWZI8V1VVxXXXXdej/XRc1/EcAAAAAAAAAAAAAADObQUNz0+YMCEqKiqSevHixdHW1nbGPatWrYpt27Yl9Q033BDV1dV56eeqq66K/v37J/VLL70U77777hn37NixI37zm98k9dixY2Po0KF56QcAAAAAAAAAAAAAgOIoaHi+rq4upk6dmtQNDQ3x5JNPnnZ9a2trPPLII0mdyWRi1qxZp12/a9euuOSSS5J/JkyYcMZ+KioqYsaMGUl9+PDhePTRR0+7vr29PR566KFob29P3n39618/4x0AAAAAAAAAAAAAAJx7Chqej4iYOXNm1NTUJPX8+fNj4cKFOYH0iIgDBw7EjBkzYsuWLcm7m266KcaMGZPXfm677bb44z/+46T++c9/Ht/97nfj+PHjOeuOHDkS3/zmN2PVqlXJu3HjxsWkSZPy2g8AAAAAAAAAAAAAAIWXyWaz2UJfsmLFipg1a1ZOYH748OFxzTXXRG1tbezYsSOWL18ex44dS34fNWpULFq0KPr06XPac3ft2hUTJ05M6sGDB8eyZcs+sJ9NmzbFbbfdFkePHk3eDRgwIG644Ya44IILYs+ePbFs2bJ49913k9/r6+vj2WefjUGDBnX63xsAAAAAAAAAAAAAgHNDUcLzERHPP/98zJ07NyewfjqjR4+Oxx9/PIYMGXLGdWcbno+I+Kd/+qd44IEHoqmp6QPXDhkyJObPn5/3r+ADAAAAAAAAAAAAAFAcZcW6aMqUKfHcc8/FpEmToqKi4n3X1NfXx1133RXPPPPMBwbnu+v666+PF198MaZMmRLnnXfe+67p169f3H777fHCCy8IzgMAAAAAAAAAAAAAfIgV7cvzpzp48GCsX78+9uzZE83NzVFXVxdDhw6Nyy+/PHr16lXsdqK5uTnWrl0bb7/9dhw6dCj69+8fgwcPjiuuuCIqKyuL3g8AAAAAAAAAAAAAAPnVI+F5AAAAAAAAAAAAAAAoprKebgAAAAAAAAAAAAAAAApNeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUK+/pBs4Fzc3NsXbt2mhsbIympqbo379/DB48OMaPHx+VlZU93R4AAAAAAAAAAAAAAN1UtPB8c3NzbN68OTZu3BgbN26M119/PXbv3p38Pnjw4Fi2bFmx2omIiL1798a8efNiyZIl0dLS8p7f+/XrF7fcckvcd9990adPn6L2BgAAAAAAAAAAAABA/mSy2Wy2kBcsXLgwnnvuudiyZUu0t7efdl2xw/O//vWv44EHHoiDBw9+4NqhQ4fG/PnzY/To0UXoDAAAAAAAAAAAAACAfCv4l+fXrFkTv//97wt9TZds2rQp7r777jh69GjybsCAAfHpT3866urq4u23347ly5fHu+++GxERO3fujK9+9avx7LPPxqBBg3qqbQAAAAAAAAAAAAAAzlLBw/Pvp7q6OsaOHRubNm2KlpaWot597NixuOuuu3KC81/+8pfj/vvvj8rKyuTdkSNHYs6cOfHyyy9HRMQ777wT9913X/zsZz8rar8AAAAAAAAAAAAAAHRfwcPzVVVVcdlll8Wll14aH//4x+PSSy+NkSNHRllZWUyYMKHo4fmnn3463n777aT+/Oc/H7Nnz37Puj59+sRjjz0WBw8ejFWrVkVExIYNG+JXv/pVTJo0qWj9AgAAAAAAAAAAAADQfZlsNpvtqcsnTJgQu3fvjoiIwYMHx7Jlywp6X1tbW1x//fVx8ODBiIjo27dvLF26NPr163faPTt27IjJkydHe3t7RESMHTs2nnvuuYL2CQAAAAAAAAAAAABAfpX1dAPF9NprryXB+YiIz33uc2cMzkdEXHTRRfHJT34yqTdt2hQ7d+4sWI8AAAAAAAAAAAAAAORfSYXnO37Z/sYbb+zUvsmTJ+fUS5cuzVtPAAAAAAAAAAAAAAAUXkmF59euXZs89+rVKy677LJO7bv88stz6jVr1uS1LwAAAAAAAAAAAAAACqtkwvPt7e2xffv2pL7ooouipqamU3tHjBgRvXv3TuqtW7fmuz0AAAAAAAAAAAAAAAqoZMLzu3fvjtbW1qS+8MILO703k8nEoEGDknrnzp3R1taW1/4AAAAAAAAAAAAAACickgnPNzY25tSnhuE7Y+DAgcnziRMnYv/+/XnpCwAAAAAAAAAAAACAwiuZ8Hxzc3NOXV1d3aX9NTU1ZzwPAAAAAAAAAAAAAIBzV8mE51taWnLqqqqqLu3vuL7jeQAAAAAAAAAAAAAAnLtKJjzf2tqaU1dUVHRpf2Vl5RnPAwAAAAAAAAAAAADg3FUy4fmOX45va2vr0v7jx4+f8TwAAAAAAAAAAAAAAM5d5T3dQLFUV1fn1F39cnzH9R3P64pDhw5FNps96/0AAB8GmUwm+vXrFxHmHwCgNJh/AIBSY/4BAEqN+QcAKDWnzj9pUTLh+Zqampy6ubm5S/s7ru94Xldks1nDMwBQUsw/AECpMf8A/4+9ew+ysj7zBP6cpi/YDUPTdgORiwSIhia6QcRLjEMCpKQ0m2XMLiTrWsYJI8HLqNFdMzWDkh0nMdnSyg4assbIpJLZCZI4EqMrk3CribJBLrsY0WRBoIWVRoTm0kDT0Gf/SM27HATsps85De/5fKqoep+3f5cH/nqK+vICUGrMPwBAqTH/AACcm8p6uoFiGThwYE7d3Nzcpf07duxInsvLy+P888/PS18AAAAAAAAAAAAAABReyYTnBw8eHL17907q7du3d3pvNpvNCc8PGzYsKioq8tofAAAAAAAAAAAAAACFUzLh+bKyshg+fHhSNzU1RWtra6f2btq0Kdra2pJ6xIgR+W4PAAAAAAAAAAAAAIACKpnwfETEuHHjkudjx47F+vXrO7Vv3bp1OfX48ePz2hcAAAAAAAAAAAAAAIVVUuH5SZMm5dQvvfRSp/aduO7EcwAAAAAAAAAAAAAAOLuVVHj+iiuuiLq6uqR+4YUXYt++fafds3Xr1njllVeSesyYMTF06NCC9QgAAAAAAAAAAAAAQP6d0+H5bdu2xcUXX5z8mjhx4mnXV1RUxIwZM5J6//798cgjj5xyfUdHRzz00EPR0dGRvLv99tu73zgAAAAAAAAAAAAAAEV1Tofnz8RNN90UH/rQh5L6Zz/7WXzrW9+KI0eO5Kw7cOBA3HfffbFy5crk3dixY2Py5MlF6xUAAAAAAAAAAAAAgPwoL/QF27dvj8985jMn/dmxY8dy1jU2Np503d/93d/FFVdckZd+evfuHU888UTcdNNNcejQoYiIePrpp+MXv/hFTJgwIc4///zYsWNHLF26NPbt25fsa2hoiO985zt56QEAAAAAAAAAAAAAgOIqeHg+m83mhORP51TrstlsPluKMWPGxNy5c+P++++PlpaWiIjYuXNnLFy48KTrhwwZEnPnzo1BgwbltQ8AAAAAAAAAAAAAAIqjrKcb6CnXXnttPP/88zF16tQ477zzTrqmX79+cfPNN8eiRYtO+VV8AAAAAAAAAAAAAADOfplsvj/rfg5qbW2N1atXxzvvvBN79+6Nurq6GDx4cFx++eVRWVmZ9/taWlry/jV9AICzTSaTidra2ogw/wAApcH8AwCUGvMPAFBqzD8AQKk5fv5Ji/KebuBsUFNTExMmTOjpNgAAAAAAAAAAAAAAKJCynm4AAAAAAAAAAAAAAAAKTXgeAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9cp74tKWlpZYu3Zt7NixIw4cOBADBgyIIUOGxNixY6NXr15F7aWjoyM2btwYb7zxRuzZsycOHToUNTU1cf7550djY2MMHz48MplMUXsCAAAAAAAAAAAAACC/ihqe37x5czz66KOxfPnyaG9vf9/PGxoaYvr06TFz5syorKwsaC/79++Pp556Kn72s5/Fu+++e8p1gwcPji984Qtxyy23RFVVVUF7AgAAAAAAAAAAAACgMDLZbDZbjIsWLVoUc+bMiYMHD37g2sbGxpg7d24MGTKkIL2sW7cu7r777mhubu70ng9/+MPxxBNPxMiRI7t9f0tLSxTpjx0AoMdkMpmora2NCPMPAFAazD8AQKkx/wAApcb8AwCUmuPnn7QoSnh+xYoV8ZWvfCU6OjqSd8OHD48rr7wyamtro6mpKZYtWxaHDx9Ofj5q1KhYsGBB9OnTJ6+9vPnmm3HTTTfFgQMHkneZTCbGjRsXY8aMib59+8bevXvjt7/9baxbty5nb0NDQzzzzDNxwQUXdKsHwzMAUAr85SEAUGrMPwBAqTH/AAClxvwDAJQa4fkzsHPnzpgyZUq0trb+4cJMJh544IG45ZZboqysLFm3e/fuuPvuu2PVqlXJuxtuuCEee+yxvPWSzWZj2rRpsX79+uTdRRddFI8++mhcdNFF71u/YcOG+OpXvxqbN29O3k2ePDmeeOKJbvVheAYASoG/PAQASo35BwAoNeYfAKDUmH8AgFKTxvB82Qcv6Z558+YlwfmIiLvuuituvfXWnOB8RERdXV089dRTMXLkyOTdiy++GBs2bMhbL+vXr88Jzvfr1y+efvrpkwbnIyIaGxvjhz/8YfTt2zd5t2TJkmhubs5bTwAAAAAAAAAAAAAAFF5Bw/O7du2KhQsXJvWwYcPitttuO+X6qqqqmD17dlJns9mYN29e3vpZuXJlTj1t2rRoaGg47Z6BAwfGv/t3/y6np9/85jd56wkAAAAAAAAAAAAAgMIraHh+yZIl0d7entTTpk2LioqK0+65+uqrY8SIEUm9YsWKOHjwYF76OfGL8R//+Mc7te+yyy7LqXfu3JmXfgAAAAAAAAAAAAAAKI6ChueXLl2aU0+ZMqVT+6677rrkua2tLV5++eW89NPR0ZFT9+7du1P7zjvvvJw6k8nkpR8AAAAAAAAAAAAAAIqjoOH5NWvWJM/19fUxdOjQTu0bO3ZsTv3qq6/mpZ8hQ4bk1O+8806n9m3fvj2nvvDCC/PSDwAAAAAAAAAAAAAAxVGw8Hxzc3Ps378/qUePHt3pvY2NjTn1pk2b8tLTtddem1P/j//xPzq178UXX0yeq6ur48orr8xLPwAAAAAAAAAAAAAAFEfBwvNvvfVWTn3BBRd0em99fX1UVFQk9ebNm/PS00c/+tH41Kc+ldQvv/xy/MM//MNp9/zwhz+M//k//2dS33rrrdG3b9+89AMAAAAAAAAAAAAAQHEU9Mvzxxs0aFCn92YymRg4cOApz+qOv/7rv46hQ4cm9Zw5c+KrX/1q/OY3v4kDBw5ENpuN/fv3x8qVK+Ouu+6Kb3zjG8naT3/60zFr1qy89QIAAAAAAAAAAAAAQHGUF+rggwcP5tTV1dVd2l9TU5M8Hz16NNra2qKqqqrbfQ0YMCAWLFgQc+bMiX/6p3+KiIgXXnghXnjhhVPu6dOnT8yYMSNuu+226NWrV7d7yGQy3T4DAOBsd/zMY/4BAEqB+QcAKDXmHwCg1Jh/AIBSk8aZp2jh+a4G309c39rampfwfETE+eefH3Pnzo0VK1bEgw8+GDt27Djl2mHDhsWDDz4Y1157bV7ujojo169f3s4CADgXmH8AgFJj/gEASo35BwAoNeYfAIBzU1mhDm5ra8upKyoqurS/srLytOd1R3Nzc9xzzz0xc+bM0wbnIyKamppixowZ8YUvfCE2btyYtx4AAAAAAAAAAAAAACiegn15/sSvxLe3t3dp/5EjR0573pl6880340tf+lLs2bMnIv7w3wl89rOfjRtvvDE++tGPRt++fWP//v2xYcOG+Md//Md44YUXIpvNxrp16+Lf/tt/G9///vdj/Pjx3eph7969kc1m8/HbAQA4a2UymeSLG+YfAKAUmH8AgFJj/gEASo35BwAoNcfPP2lRsPB8dXV1Tt3VL8efuL6mpqbbPe3duzf+7M/+LAnOV1RUxNy5c+PTn/50zrq6urr45Cc/GZ/85CfjhhtuiD//8z+P9vb2OHToUNx5553xi1/8IhoaGs64j2w2a3gGAEqK+QcAKDXmHwCg1Jh/AIBSY/4BADg3lRXq4BPD862trV3af/z68vLyvHx5/nvf+17s3Lkzqe+55573BedPNHHixLj77ruTuqWlJebNm9ftXgAAAAAAAAAAAAAAKJ6ChecHDhyYUzc3N3d6bzabzVl/4llnIpvNxnPPPZfU1dXV8R/+w3/o1N6bb7455x8DPP/889HR0dHtngAAAAAAAAAAAAAAKI6ChedHjhyZU2/fvr3Te3ft2hXt7e1JPWLEiG7309TUFLt3707qSy+9NHr37t2pvb17945LLrkkqfft2xdbt27tdk8AAAAAAAAAAAAAABRHwcLzAwYMiL59+yb1G2+80em9GzZsyKnzEZ5/7733cur6+vou7W9oaMip9+zZ0+2eAAAAAAAAAAAAAAAojoKF5yMixo0blzy/99570dTU1Kl9a9euzanHjx/f7V6qqqpy6ra2ti7tP3ToUE5dXV3d7Z4AAAAAAAAAAAAAACiOgobnJ02alFO/9NJLndq3ePHi5Lmqqiquueaabvdy/vnn59SbNm3q0v4T19fV1XW7JwAAAAAAAAAAAAAAiqOg4fmJEydGRUVFUi9cuDDa29tPu2flypWxefPmpJ4wYUJevvI+aNCgGDBgQFK/9dZb8eabb3Zq72uvvRZbtmxJ6sGDB+ecBQAAAAAAAAAAAADA2a2g4fn6+vqYNm1aUjc1NcWTTz55yvVtbW3x8MMPJ3Umk4lZs2adcv22bdvi4osvTn5NnDjxtP18+tOfzqnnzJkTR44cOe2etra2+PrXv57z7oPuAQAAAAAAAAAAAADg7FLQ8HxExMyZM6Ompiap586dG/Pnz4+Ojo6cdbt3744ZM2bExo0bk3fXX399NDY25q2X2267LedL+OvWrYsvf/nL0dTUdNL1b731Vtxyyy3x2muvJe+qqqpixowZeesJAAAAAAAAAAAAAIDCy2Sz2WyhL1m+fHnMmjUrJzA/fPjwuOqqq6K2tja2bt0ay5Yti8OHDyc/HzVqVCxYsCD69OlzynO3bdsWkyZNSurBgwfH0qVLT9vLggUL4sEHH8x516tXrxg3blw0NjZGnz59Yv/+/fH666/H2rVr3xfy/9a3vhVTp07tzG/7lFpaWqIIf+wAAD0qk8lEbW1tRJh/AIDSYP4BAEqN+QcAKDXmHwCg1Bw//6RFeTEu+dSnPhXf/OY3Y86cOXHo0KGIiNiyZUts2bLlpOtHjx4djz/++GmD82dq+vTpERHxjW98IwnrHzt2LFatWhWrVq065b7q6uqYPXt2t4PzAAAAAAAAAAAAAAAUX1mxLpo6dWo8++yzMXny5KioqDjpmoaGhrjjjjvimWeeiSFDhhSsl+nTp8fPf/7z+OIXvxg1NTWnXdunT5+46aab4uc//3nceOONBesJAAAAAAAAAAAAAIDCyWR74P8P2rNnT6xduzZ27NgRra2tUV9fH0OHDo3LLrssevXqVdRejh07Fr/73e/i97//fbS0tMTBgwejuro6amtr4+KLL46LLroo7z35b5sAgFLgv60EAEqN+QcAKDXmHwCg1Jh/AIBSc/z8kxblPXFp//79Y9KkST1x9fv06tUrGhsbo7GxsadbAQAAAAAAAAAAAACgQMp6ugEAAAAAAAAAAAAAACg04XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABSr7wnLm1paYm1a9fGjh074sCBAzFgwIAYMmRIjB07Nnr16tUTLUVExHvvvRf/+3//73j77bejtbU1Kisro66uLoYNGxajR4+OmpqaHusNAAAAAAAAAAAAAIAzV9Tw/ObNm+PRRx+N5cuXR3t7+/t+3tDQENOnT4+ZM2dGZWVl0fpasmRJzJ8/P1avXh3ZbPaka8rKymLMmDFx8803x7/5N/+maL0BAAAAAAAAAAAAANB9ZcW6aNGiRXHjjTfGL3/5y5MG5yMi3n333Xj88cdj+vTpsW3btoL3tGfPnpg5c2bcfvvt8eqrr54yOB8R0dHREa+99losX7684H0BAAAAAAAAAAAAAJBfRfny/IoVK+JrX/tadHR0JO+GDx8eV155ZdTW1kZTU1MsW7YsDh8+HBERGzZsiJkzZ8aCBQuiT58+Bempubk5brnllti8eXPO+4suuiguvfTSqK+vj2PHjsXOnTvjt7/9bWzatKkgfQAAAAAAAAAAAAAAUHgFD8/v3Lkz7r333iQ4n8lk4oEHHohbbrklysr+/4fvd+/eHXfffXesWrUqIiI2btwYDz74YDz22GN576mtrS1uu+22nOD85ZdfHg8++GBcfPHFJ93z9ttvx6JFi6KlpSXv/QAAAAAAAAAAAAAAUFhlH7yke+bNmxetra1Jfdddd8Wtt96aE5yPiKirq4unnnoqRo4cmbx78cUXY8OGDXnv6bvf/W68+eabSf25z30ufvzjH58yOB8RMXTo0Ljzzjvjr/7qr/LeDwAAAAAAAAAAAAAAhVXQ8PyuXbti4cKFST1s2LC47bbbTrm+qqoqZs+endTZbDbmzZuX1542btwYP/jBD5J6zJgx8c1vfjMymUxe7wEAAAAAAAAAAAAA4OxR0PD8kiVLor29PamnTZsWFRUVp91z9dVXx4gRI5J6xYoVcfDgwbz1NH/+/Jye/vIv/zLKy8vzdj4AAAAAAAAAAAAAAGefgobnly5dmlNPmTKlU/uuu+665LmtrS1efvnlvPTT2toaL774YlKPHj06xo0bl5ezAQAAAAAAAAAAAAA4exU0PL9mzZrkub6+PoYOHdqpfWPHjs2pX3311bz0s2zZspyv2N9www15ORcAAAAAAAAAAAAAgLNbwcLzzc3NsX///qQePXp0p/c2Njbm1Js2bcpLT//rf/2vnPryyy/Py7kAAAAAAAAAAAAAAJzdygt18FtvvZVTX3DBBZ3eW19fHxUVFdHe3h4REZs3b85LT7/97W+T5/Ly8iTQ39zcHIsWLYqlS5fGtm3b4sCBA9G/f/8YMmRIXH311fGv//W/7vRX8wEAAAAAAAAAAAAAOPsULDzf3NycUw8aNKjTezOZTAwcODC2bdt20rPO1PFfsG9oaIjevXvHf//v/z3+y3/5L3Hw4MGctYcOHYr/+3//b6xatSq++93vxhe+8IX4T//pP0VlZWVeegEAAAAAAAAAAAAAoHgKFp4/MYxeXV3dpf01NTXJ89GjR6OtrS2qqqrOuJ+Ojo7Yv39/Ujc0NMR3vvOdmDdv3gfubW9vjx/96Efx+uuvx/e///3o06fPGfcR8Yd/HAAAkHbHzzzmHwCgFJh/AIBSY/4BAEqN+QcAKDVpnHmKFp7vavD9xPWtra3dCs/v378/stlsUm/evDnWr18fERHl5eUxffr0mDp1aowcOTIymUy89dZb8dxzz8U//MM/xNGjRyMiYu3atfGXf/mX8V//63894z4iIvr169et/QAA5xrzDwBQasw/AECpMf8AAKXG/AMAcG4qWHi+ra0tp66oqOjS/srKytOe11Unhvn/5Sv0VVVVMW/evLjmmmtyfv6xj30sPvaxj8WkSZPiK1/5Shw+fDgiIl566aVYunRpTJw4sVv9AAAAAAAAAAAAAABQPAULz5/4lfj29vYu7T9y5Mhpz+tuP//innvueV9w/nhXX311fPWrX41vfOMbybsf/OAH3QrP7927N+cr+AAAaZTJZJIvbph/AIBSYP4BAEqN+QcAKDXmHwCg1Bw//6RFwcLz1dXVOXVXvxx/4vqampq89hPxh/8+6aabbvrAvV/84hfje9/7XuzevTsiItasWRMtLS1RW1t7Rr1ks1nDMwBQUsw/AECpMf8AAKXG/AMAlBrzDwDAuamsUAefGFZvbW3t0v7j15eXl3f7y/O9e/eO8vLcfyvwiU98olPnVlZWxic/+cmkzmazsW7dum71AwAAAAAAAAAAAABA8RQsPD9w4MCcurm5udN7s9lszvoTz8pXTx/5yEc6vfeiiy7Kqbvy+wEAAAAAAAAAAAAAoGcVLDw/cuTInHr79u2d3rtr165ob29P6hEjRhSkp379+nV674lr9+7dm5eeAAAAAAAAAAAAAAAovIKF5wcMGBB9+/ZN6jfeeKPTezds2JBT5ys8P2rUqJz6yJEjnd574tqqqqq89AQAAAAAAAAAAAAAQOEVLDwfETFu3Ljk+b333oumpqZO7Vu7dm1OPX78+Lz0c8UVV+TUzc3Nnd67Y8eOnLp///556QkAAAAAAAAAAAAAgMIraHh+0qRJOfVLL73UqX2LFy9OnquqquKaa67JSz/XXHNNVFdXJ/WJIf3TWbduXU7d2NiYl54AAAAAAAAAAAAAACi8gobnJ06cGBUVFUm9cOHCaG9vP+2elStXxubNm5N6woQJOYH37qisrIzJkycn9fr16+P3v//9B+7btGlTrFmzJqkHDBgQH/nIR/LSEwAAAAAAAAAAAAAAhVfQ8Hx9fX1MmzYtqZuamuLJJ5885fq2trZ4+OGHkzqTycSsWbNOuX7btm1x8cUXJ78mTpz4gT3dfvvtUV5entRz5sw5baD/6NGjMWfOnMhms8m7m2+++QPvAQAAAAAAAAAAAADg7FHQ8HxExMyZM6Ompiap586dG/Pnz4+Ojo6cdbt3744ZM2bExo0bk3fXX399NDY25rWfD3/4wzF9+vSkXrNmTcyaNSt27tz5vrXvvvtu3HHHHbFq1ark3eDBg+Pf//t/n9eeAAAAAAAAAAAAAAAorEz2+E+qF8jy5ctj1qxZOYH54cOHx1VXXRW1tbWxdevWWLZsWRw+fDj5+ahRo2LBggXRp0+fU567bdu2mDRpUlIPHjw4li5d+oH9HDlyJL70pS/FmjVrkne9e/eOa665JkaOHBkREW+99Va8/PLLcejQoWTNeeedF3//938fY8aM6dxv/BRaWlqiCH/sAAA9KpPJRG1tbUSYfwCA0mD+AQBKjfkHACg15h8AoNQcP/+kRVHC8xERzz33XMyZMycnjH4qo0ePjscffzyGDBly2nVnGp6P+MMA+9WvfjVefvnlTq1vaGiIefPmxSWXXNKp9R90t+EZAEg7f3kIAJQa8w8AUGrMPwBAqTH/AAClJo3h+bJiXTR16tR49tlnY/LkyVFRUXHSNQ0NDXHHHXfEM88884HB+e6qra2NH/zgB/H1r389Ro0addp1M2fOjBdeeCEvwXkAAAAAAAAAAAAAAIqvaF+eP96ePXti7dq1sWPHjmhtbY36+voYOnRoXHbZZdGrV69itxMREW+++WZs2rQpmpub49ixY9G/f//4yEc+EpdcckmUleX33xj4l6cAQCnw5Q0AoNSYfwCAUmP+AQBKjfkHACg1afzyfHlPXNq/f/+YNGlST1x9Sh/96Efjox/9aE+3AQAAAAAAAAAAAABAAeT3k+oAAAAAAAAAAAAAAHAWEp4HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIvfKeuLSlpSXWrl0bO3bsiAMHDsSAAQNiyJAhMXbs2OjVq1dPtAQAAAAAAAAAAAAAQIoVNTy/efPmePTRR2P58uXR3t7+vp83NDTE9OnTY+bMmVFZWVnM1nLMnz8/HnnkkZx3V1xxRfzoRz/qoY4AAAAAAAAAAAAAAOiOsmJdtGjRorjxxhvjl7/85UmD8xER7777bjz++OMxffr02LZtW7Fay7Ft27b427/92x65GwAAAAAAAAAAAACAwijKl+dXrFgRX/va16KjoyN5N3z48LjyyiujtrY2mpqaYtmyZXH48OGIiNiwYUPMnDkzFixYEH369ClGi4mHHnooDh48WNQ7AQAAAAAAAAAAAAAorIKH53fu3Bn33ntvEpzPZDLxwAMPxC233BJlZf//w/e7d++Ou+++O1atWhURERs3bowHH3wwHnvssUK3mHjuuefi17/+dURENDQ0xLvvvlu0uwEAAAAAAAAAAAAAKJyyD17SPfPmzYvW1takvuuuu+LWW2/NCc5HRNTV1cVTTz0VI0eOTN69+OKLsWHDhkK3GBF/CO8/8sgjEfGHgP9f/MVfFOVeAAAAAAAAAAAAAAAKr6Dh+V27dsXChQuTetiwYXHbbbedcn1VVVXMnj07qbPZbMybN6+QLSa+8Y1vxJ49eyIiYvr06fGv/tW/Ksq9AAAAAAAAAAAAAAAUXkHD80uWLIn29vaknjZtWlRUVJx2z9VXXx0jRoxI6hUrVsTBgwcL1mNExD//8z/H888/HxERDQ0Ncd999xX0PgAAAAAAAAAAAAAAiqug4fmlS5fm1FOmTOnUvuuuuy55bmtri5dffjmvfR3v4MGD8dBDDyX1X/zFX8Qf/dEfFew+AAAAAAAAAAAAAACKr6Dh+TVr1iTP9fX1MXTo0E7tGzt2bE796quv5rWv433nO9+J7du3R0TEJz/5ybjhhhsKdhcAAAAAAAAAAAAAAD2jYOH55ubm2L9/f1KPHj2603sbGxtz6k2bNuWtr+OtX78+fvzjH0dERFVVVc4X6AEAAAAAAAAAAAAASI+CheffeuutnPqCCy7o9N76+vqoqKhI6s2bN+etr39x9OjRmD17dhw7diwiImbNmhXDhg3L+z0AAAAAAAAAAAAAAPS8gn55/niDBg3q9N5MJhMDBw485Vn58NRTT8Wbb74ZEREjR46ML3/5y3m/AwAAAAAAAAAAAACAs0N5oQ4+ePBgTl1dXd2l/TU1Ncnz0aNHo62tLaqqqvLS25YtW+K73/1uRPwhqP/1r389Kisr83J2Z2QymaLdBQDQU46fecw/AEApMP8AAKXG/AMAlBrzDwBQatI48xQtPN/V4PuJ61tbW/MSns9mszF79uxoa2uLiIgbb7wxxo8f3+1zu6Jfv35FvQ8AoKeZfwCAUmP+AQBKjfkHACg15h8AgHNTWaEO/pdw+r+oqKjo0v4TvwR/4nln6qc//WmsWrUqIiL69+8f//E//se8nAsAAAAAAAAAAAAAwNmrYF+eP/Er8e3t7V3af+TIkdOedybefffd+Pa3v53UDzzwQPTv37/b53bV3r17I5vNFv1eAIBiymQyyRc3zD8AQCkw/wAApcb8AwCUGvMPAFBqjp9/0qJg4fnq6uqcuqtfjj9xfU1NTbd7+uu//uvYt29fRERcccUV8Sd/8ifdPvNMZLNZwzMAUFLMPwBAqTH/AAClxvwDAJQa8w8AwLmprFAHnxieb21t7dL+49eXl5d3+8vzS5YsicWLF0dEREVFRXz961/v1nkAAAAAAAAAAAAAAJw7ChaeHzhwYE7d3Nzc6b3ZbDZn/YlnnYlHHnkkeb7ttttixIgR3T4TAAAAAAAAAAAAAIBzQ3mhDh45cmROvX379k7v3bVrV7S3tyd1PoLue/bsSZ6/973vxfe+970u7V+1alU0NjYm9fjx4+OHP/xht/sCAAAAAAAAAAAAAKDwChaeHzBgQPTt2zf2798fERFvvPFGp/du2LAhp873V+KPHTvW7X0dHR35agcAAAAAAAAAAAAAgAIrK+Th48aNS57fe++9aGpq6tS+tWvX5tTjx4/Pa18AAAAAAAAAAAAAAJSWgn15PiJi0qRJsXz58qR+6aWX4rbbbvvAfYsXL06eq6qq4pprrul2L6tXr+7S+m3btsWkSZOS+oorrogf/ehH3e4DAAAAAAAAAAAAAIDiK+iX5ydOnBgVFRVJvXDhwmhvbz/tnpUrV8bmzZuTesKECVFdXV2wHgEAAAAAAAAAAAAASL+Chufr6+tj2rRpSd3U1BRPPvnkKde3tbXFww8/nNSZTCZmzZp1yvXbtm2Liy++OPk1ceLE/DQOAAAAAAAAAAAAAECqFDQ8HxExc+bMqKmpSeq5c+fG/Pnzo6OjI2fd7t27Y8aMGbFx48bk3fXXXx+NjY2FbhEAAAAAAAAAAAAAgJQrL/QFAwcOjMceeyxmzZoVHR0dkc1m45FHHomf/OQncdVVV0VtbW1s3bo1li1bFocPH072jRo1Kv7zf/7PhW4PAAAAAAAAAAAAAIASUPDwfETEpz71qfjmN78Zc+bMiUOHDkVExJYtW2LLli0nXT969Oh4/PHHo0+fPsVoDwAAAAAAAAAAAACAlCsr1kVTp06NZ599NiZPnhwVFRUnXdPQ0BB33HFHPPPMMzFkyJBitQYAAAAAAAAAAAAAQMplstlsttiX7tmzJ9auXRs7duyI1tbWqK+vj6FDh8Zll10WvXr1KnY7RdfS0hI98McOAFBUmUwmamtrI8L8AwCUBvMPAFBqzD8AQKkx/wAApeb4+Sctynvi0v79+8ekSZN64moAAAAAAAAAAAAAAEpQWU83AAAAAAAAAAAAAAAAhSY8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOqV98SlLS0tsXbt2tixY0ccOHAgBgwYEEOGDImxY8dGr169itbHgQMH4v/8n/8Tb731VrS0tER7e3v80R/9UQwaNCg+/vGPR11dXdF6AQAAAAAAAAAAAACgcIoant+8eXM8+uijsXz58mhvb3/fzxsaGmL69Okxc+bMqKysLEgPr732WvzTP/1TvPLKK7Fhw4bo6Og45dpLL700brnllrjhhhsik8kUpB8AAAAAAAAAAAAAAAovk81ms8W4aNGiRTFnzpw4ePDgB65tbGyMuXPnxpAhQ/Law6233hqvvPJKl/ddffXV8e1vfzsGDBiQlz5aWlqiSH/sAAA9JpPJRG1tbUSYfwCA0mD+AQBKjfkHACg15h8AoNQcP/+kRVG+PL9ixYr42te+lvOV9+HDh8eVV14ZtbW10dTUFMuWLYvDhw9HRMSGDRti5syZsWDBgujTp0/e+ti9e/f73l1wwQXx8Y9/PAYMGBDV1dWxa9euWLVqVWzZsiVZs3LlyvjSl74Uf//3fx/9+/fPWz8AAAAAAAAAAAAAABRHwcPzO3fujHvvvTcJzmcymXjggQfilltuibKysmTd7t274+67745Vq1ZFRMTGjRvjwQcfjMceeyzvPdXX18ef/MmfxOc///n48Ic//L6fZ7PZWLx4cTz44IOxd+/eiIjYtGlTPPTQQ/G3f/u3ee8HAAAAAAAAAAAAAIDCKvvgJd0zb968aG1tTeq77rorbr311pzgfEREXV1dPPXUUzFy5Mjk3YsvvhgbNmzIWy91dXXxta99LZYtWxb333//SYPzEX8I+E+ZMiXmz58f5513XvJ+8eLFsX79+rz1AwAAAAAAAAAAAABAcRQ0PL9r165YuHBhUg8bNixuu+22U66vqqqK2bNnJ3U2m4158+blrZ/vf//7ceutt0ZlZWWn1o8ZMyZuueWWnHeLFy/OWz8AAAAAAAAAAAAAABRHQcPzS5Ysifb29qSeNm1aVFRUnHbP1VdfHSNGjEjqFStWxMGDB/PST3l5eZf33HDDDTm1L88DAAAAAAAAAAAAAJx7ChqeX7p0aU49ZcqUTu277rrrkue2trZ4+eWX89pXV1x44YU59XvvvddDnQAAAAAAAAAAAAAAcKYKGp5fs2ZN8lxfXx9Dhw7t1L6xY8fm1K+++mpe++qK1tbWnPpMvl4PAAAAAAAAAAAAAEDPKlh4vrm5Ofbv35/Uo0eP7vTexsbGnHrTpk1566urfve73+XUgwYN6qFOAAAAAAAAAAAAAAA4UwULz7/11ls59QUXXNDpvfX19VFRUZHUmzdvzltfXfXzn/88p77qqqt6qBMAAAAAAAAAAAAAAM5UQb88f7yufLE9k8nEwIEDT3lWsWzZsiWef/75pO7Vq1d85jOf6ZFeAAAAAAAAAAAAAAA4c+WFOvjgwYM5dXV1dZf219TUJM9Hjx6Ntra2qKqqyktvndHR0RF/9Vd/Fe3t7cm7qVOnxtChQ7t9diaT6fYZAABnu+NnHvMPAFAKzD8AQKkx/wAApcb8AwCUmjTOPEULz3c1+H7i+tbW1qKG55944ol49dVXk7quri7uv//+vJzdr1+/vJwDAHCuMP8AAKXG/AMAlBrzDwBQasw/AADnprJCHdzW1pZTV1RUdGl/ZWXlac8rpF/96lfxxBNPJHUmk4m/+Zu/ibq6uqL1AAAAAAAAAAAAAABA/hTsy/MnfiW+vb29S/uPHDly2vMKZc2aNXHfffdFNptN3t15550xceLEvN2xd+/enPMBANIok8kkX9ww/wAApcD8AwCUGvMPAFBqzD8AQKk5fv5Ji4KF56urq3Pqrn45/sT1NTU13e7pg/zud7+Lr3zlK3H48OHk3Re/+MW4884783pPNps1PAMAJcX8AwCUGvMPAFBqzD8AQKkx/wAAnJvKCnXwieH51tbWLu0/fn15eXnBvzzf1NQUX/7yl2Pfvn3Ju+uvvz4efPDBgt4LAAAAAAAAAAAAAEDhFSw8P3DgwJy6ubm503uz2WzO+hPPyrfm5ub40pe+FO+++27y7tprr41vf/vbUVZWsD8iAAAAAAAAAAAAAACKpGDJ8JEjR+bU27dv7/TeXbt2RXt7e1KPGDEib32daPfu3XHrrbfm9Hf55ZfH448/HhUVFQW7FwAAAAAAAAAAAACA4ilYeH7AgAHRt2/fpH7jjTc6vXfDhg05daHC8wcOHIgZM2bEpk2bkndjxoyJ//bf/lv07t27IHcCAAAAAAAAAAAAAFB8BQvPR0SMGzcueX7vvfeiqampU/vWrl2bU48fPz6vfUVEHD58OGbOnBmvv/568m7UqFHx1FNPRZ8+ffJ+HwAAAAAAAAAAAAAAPaeg4flJkybl1C+99FKn9i1evDh5rqqqimuuuSavfbW3t8ef//mfx+rVq5N3w4YNi6effjrq6uryehcAAAAAAAAAAAAAAD2voOH5iRMnRkVFRVIvXLgw2tvbT7tn5cqVsXnz5qSeMGFCVFdX562njo6OeOCBB2LFihXJu0GDBsX8+fNj4MCBebsHAAAAAAAAAAAAAICzR0HD8/X19TFt2rSkbmpqiieffPKU69va2uLhhx9O6kwmE7NmzTrl+m3btsXFF1+c/Jo4ceIH9jRnzpx44YUXkvr888+P+fPnx5AhQz5wLwAAAAAAAAAAAAAA56aChucjImbOnBk1NTVJPXfu3Jg/f350dHTkrNu9e3fMmDEjNm7cmLy7/vrro7GxMW+9PPbYY7FgwYKk7tevXzz99NMxYsSIvN0BAAAAAAAAAAAAAMDZJ5PNZrOFvmT58uUxa9asnMD88OHD46qrrora2trYunVrLFu2LA4fPpz8fNSoUbFgwYLo06fPKc/dtm1bTJo0KakHDx4cS5cuPeX6iy++OKfOZDJRVtb1fz+wYcOGLu85XktLSxThjx0AoEdlMpmora2NCPMPAFAazD8AQKkx/wAApcb8AwCUmuPnn7QoL8Yln/rUp+Kb3/xmzJkzJw4dOhQREVu2bIktW7acdP3o0aPj8ccfP21wPh+y2WwcO3asoHcAAAAAAAAAAAAAANDzuv7Z9TM0derUePbZZ2Py5MlRUVFx0jUNDQ1xxx13xDPPPBNDhgwpVmsAAAAAAAAAAAAAAKRcJtsD/3/Qnj17Yu3atbFjx45obW2N+vr6GDp0aFx22WXRq1evYrdTdP7bJgCgFPhvKwGAUmP+AQBKjfkHACg15h8AoNQcP/+kRXlPXNq/f/+YNGlST1wNAAAAAAAAAAAAAEAJKuvpBgAAAAAAAAAAAAAAoNCE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFKvvCcubWlpibVr18aOHTviwIEDMWDAgBgyZEiMHTs2evXqVfR+WltbY/Xq1dHc3BwtLS1RV1cXgwcPjnHjxkVlZWXR+wEAAAAAAAAAAAAAIL+KGp7fvHlzPProo7F8+fJob29/388bGhpi+vTpMXPmzKKE1nfu3BmPPfZYLF68OA4ePPi+n/fr1y8+97nPxT333BN9+vQpeD8AAAAAAAAAAAAAABRGWbEuWrRoUdx4443xy1/+8qTB+YiId999Nx5//PGYPn16bNu2raD9/PrXv47Pfe5z8Y//+I8nDc5HROzduzd+9KMfxdSpU+ONN94oaD8AAAAAAAAAAAAAABROJpvNZgt9yYoVK+IrX/lKdHR0JO+GDx8eV155ZdTW1kZTU1MsW7YsDh8+nPx81KhRsWDBgoJ88f3111+Pm266KQ4dOpS8GzBgQPzxH/9x1NfXxzvvvBPLli2Lffv2JT9vaGiIn/70pzFo0KBu39/S0hJF+GMHAOhRmUwmamtrI8L8AwCUBvMPAFBqzD8AQKkx/wAApeb4+SctCh6e37lzZ0yZMiVaW1v/cGEmEw888EDccsstUVb2/z98v3v37rj77rtj1apVybsbbrghHnvssbz2c/jw4ZgyZUq88847ybs//dM/jXvvvTcqKyuTdwcOHIjZs2fHiy++mLwbO3Zs/OQnP+l2D4ZnAKAU+MtDAKDUmH8AgFJj/gEASo35BwAoNWkMz5d98JLumTdvXhKcj4i466674tZbb80JzkdE1NXVxVNPPRUjR45M3r344ouxYcOGvPbz4x//OCc4//nPfz4eeOCBnOB8RESfPn3i0Ucfjauvvjp5t27duvjVr36V134AAAAAAAAAAAAAACi8gobnd+3aFQsXLkzqYcOGxW233XbK9VVVVTF79uykzmazMW/evLz1097eHk899VRS9+3bNx544IFTri8rK4uvf/3rOUH/7373u3nrBwAAAAAAAAAAAACA4ihoeH7JkiXR3t6e1NOmTYuKiorT7rn66qtjxIgRSb1ixYo4ePBgXvr5zW9+E3v27Enqz372s9GvX7/T7rnwwgvjE5/4RFK//vrr8fbbb+elHwAAAAAAAAAAAAAAiqOg4fmlS5fm1FOmTOnUvuuuuy55bmtri5dffrkg/Rx/z+mc2PeSJUvy0g8AAAAAAAAAAAAAAMVR0PD8mjVrkuf6+voYOnRop/aNHTs2p3711Vfz0s/q1auT5169esWll17aqX2XXXZZQfoBAAAAAAAAAAAAAKA4Chaeb25ujv379yf16NGjO723sbExp960aVO3++no6IgtW7Yk9YUXXhg1NTWd2jtixIjo3bt3XvsBAAAAAAAAAAAAAKB4Chaef+utt3LqCy64oNN76+vro6KiIqk3b97c7X62b98ebW1tZ9RPJpOJQYMGJfXbb78d7e3t3e4JAAAAAAAAAAAAAIDiKOiX5493fPj8g2QymRg4cOApzyp2PxGR08/Ro0fjvffe63ZPAAAAAAAAAAAAAAAUR3mhDj548GBOXV1d3aX9NTU1yfPRo0ejra0tqqqqzrif1tbWvPVzsvO6IpPJnPFeAIBzxfEzj/kHACgF5h8AoNSYfwCAUmP+AQBKTRpnnqKF57safD9xfWtra7fC8/nu58TzuqJfv35nvBcA4Fxk/gEASo35BwAoNeYfAKDUmH8AAM5NZYU6uK2tLaeuqKjo0v7KysrTnneu9wMAAAAAAAAAAAAAQPEULDx/4pfa29vbu7T/yJEjpz3vXO8HAAAAAAAAAAAAAIDiKVh4vrq6Oqfu6pfaT1xfU1NzVvVz4nkAAAAAAAAAAAAAAJy9ihaeb21t7dL+49eXl5d3+0vvJ4bvu9PPyc4DAAAAAAAAAAAAAODsVbDw/MCBA3Pq5ubmTu/NZrM56088q9j9RETs2LEjeS4vL4/zzz+/2z0BAAAAAAAAAAAAAFAcBQvPjxw5Mqfevn17p/fu2rUr2tvbk3rEiBHd7mfw4MHRu3fvM+onm83mhOeHDRsWFRUV3e4JAAAAAAAAAAAAAIDiKFh4fsCAAdG3b9+kfuONNzq9d8OGDTl1PsLzZWVlMXz48KRuamqK1tbWTu3dtGlTtLW15bUfAAAAAAAAAAAAAACKp2Dh+YiIcePGJc/vvfdeNDU1dWrf2rVrc+rx48fnvZ9jx47F+vXrO7Vv3bp1BekHAAAAAAAAAAAAAIDiKGh4ftKkSTn1Sy+91Kl9ixcvTp6rqqrimmuu6dF+Tlx34jkAAAAAAAAAAAAAAJzdChqenzhxYlRUVCT1woULo729/bR7Vq5cGZs3b07qCRMmRHV1dV76ueKKK6Kuri6pX3jhhdi3b99p92zdujVeeeWVpB4zZkwMHTo0L/0AAAAAAAAAAAAAAFAcBQ3P19fXx7Rp05K6qakpnnzyyVOub2tri4cffjipM5lMzJo165Trt23bFhdffHHya+LEiaftp6KiImbMmJHU+/fvj0ceeeSU6zs6OuKhhx6Kjo6O5N3tt99+2jsAAAAAAAAAAAAAADj7FDQ8HxExc+bMqKmpSeq5c+fG/PnzcwLpERG7d++OGTNmxMaNG5N3119/fTQ2Nua1n5tuuik+9KEPJfXPfvaz+Na3vhVHjhzJWXfgwIG47777YuXKlcm7sWPHxuTJk/PaDwAAAAAAAAAAAAAAhZfJZrPZQl+yfPnymDVrVk5gfvjw4XHVVVdFbW1tbN26NZYtWxaHDx9Ofj5q1KhYsGBB9OnT55Tnbtu2LSZNmpTUgwcPjqVLl35gP6+//nrcdNNNcejQoeTdgAEDYsKECXH++efHjh07YunSpbFv377k5w0NDfHTn/40Bg0a1OnfNwAAAAAAAAAAAAAAZ4eihOcjIp577rmYM2dOTmD9VEaPHh2PP/54DBky5LTrzjQ8HxHxz//8z3H//fdHS0vLB64dMmRIzJ07N+9fwQcAAAAAAAAAAAAAoDjKinXR1KlT49lnn43JkydHRUXFSdc0NDTEHXfcEc8888wHBue769prr43nn38+pk6dGuedd95J1/Tr1y9uvvnmWLRokeA8AAAAAAAAAAAAAMA5rGhfnj/enj17Yu3atbFjx45obW2N+vr6GDp0aFx22WXRq1evYrcTra2tsXr16njnnXdi7969UVdXF4MHD47LL788Kisri94PAAAAAAAAAAAAAAD51SPheQAAAAAAAAAAAAAAKKaynm4AAAAAAAAAAAAAAAAKTXgeAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1Cvv6QbOBq2trbF69epobm6OlpaWqKuri8GDB8e4ceOisrKyp9sDAAAAAAAAAAAAAKCbihaeb21tjQ0bNsT69etj/fr18dprr8X27duTnw8ePDiWLl1arHYiImLnzp3x2GOPxeLFi+PgwYPv+3m/fv3ic5/7XNxzzz3Rp0+fovYGAAAAAAAAAAAAAED+ZLLZbLaQF8yfPz+effbZ2LhxY3R0dJxyXbHD87/+9a/j/vvvjz179nzg2qFDh8bcuXNj9OjRRegMAAAAAAAAAAAAAIB8K/iX51999dX4/e9/X+hruuT111+PO++8Mw4dOpS8GzBgQPzxH/9x1NfXxzvvvBPLli2Lffv2RUTE22+/HX/2Z38WP/3pT2PQoEE91TYAAAAAAAAAAAAAAGeo4OH5k6muro4xY8bE66+/HgcPHizq3YcPH4477rgjJzj/p3/6p3HvvfdGZWVl8u7AgQMxe/bsePHFFyMi4t1334177rknfvKTnxS1XwAAAAAAAAAAAAAAuq/g4fmqqqq49NJL45JLLomPfexjcckll8TIkSOjrKwsJk6cWPTw/I9//ON45513kvrzn/98PPDAA+9b16dPn3j00Udjz549sXLlyoiIWLduXfzqV7+KyZMnF61fAAAAAAAAAAAAAAC6L5PNZrM9dfnEiRNj+/btERExePDgWLp0aUHva29vj2uvvTb27NkTERF9+/aNJUuWRL9+/U65Z+vWrTFlypTo6OiIiIgxY8bEs88+W9A+AQAAAAAAAAAAAADIr7KebqCYfvOb3yTB+YiIz372s6cNzkdEXHjhhfGJT3wiqV9//fV4++23C9YjAAAAAAAAAAAAAAD5V1Lh+RO/bH/dddd1at+UKVNy6iVLluStJwAAAAAAAAAAAAAACq+kwvOrV69Onnv16hWXXnppp/ZddtllOfWrr76a174AAAAAAAAAAAAAACiskgnPd3R0xJYtW5L6wgsvjJqamk7tHTFiRPTu3TupN23alO/2AAAAAAAAAAAAAAAooJIJz2/fvj3a2tqS+oILLuj03kwmE4MGDUrqt99+O9rb2/PaHwAAAAAAAAAAAAAAhVMy4fnm5uac+vgwfGcMHDgweT569Gi89957eekLAAAAAAAAAAAAAIDCK5nwfGtra05dXV3dpf01NTWnPQ8AAAAAAAAAAAAAgLNXyYTnDx48mFNXVVV1af+J6088DwAAAAAAAAAAAACAs1fJhOfb2tpy6oqKii7tr6ysPO15AAAAAAAAAAAAAACcvcp7uoFiOfHL8e3t7V3af+TIkdOe1xV79+6NbDZ7xvsBAM4FmUwm+vXrFxHmHwCgNJh/AIBSY/4BAEqN+QcAKDXHzz9pUTLh+erq6py6q1+OP3H9ied1RTabNTwDACXF/AMAlBrzDwBQasw/AECpMf8AAJybynq6gWKpqanJqVtbW7u0/8T1J54HAAAAAAAAAAAAAMDZq2TC8wMHDsypm5ubu7R/x44dyXN5eXmcf/75eekLAAAAAAAAAAAAAIDCK5nw/ODBg6N3795JvX379k7vzWazOeH5YcOGRUVFRV77AwAAAAAAAAAAAACgcEomPF9WVhbDhw9P6qampmhtbe3U3k2bNkVbW1tSjxgxIt/tAQAAAAAAAAAAAABQQCUTno+IGDduXPJ87NixWL9+faf2rVu3LqceP358XvsCAAAAAAAAAAAAAKCwSio8P2nSpJz6pZde6tS+E9edeA4AAAAAAAAAAAAAAGe3kgrPX3HFFVFXV5fUL7zwQuzbt++0e7Zu3RqvvPJKUo8ZMyaGDh1asB4BAAAAAAAAAAAAAMi/czo8v23btrj44ouTXxMnTjzt+oqKipgxY0ZS79+/Px555JFTru/o6IiHHnooOjo6kne333579xsHAAAAAAAAAAAAAKCozunw/Jm46aab4kMf+lBS/+xnP4tvfetbceTIkZx1Bw4ciPvuuy9WrlyZvBs7dmxMnjy5aL0CAAAAAAAAAAAAAJAf5YW+YPv27fGZz3zmpD87duxYzrrGxsaTrvu7v/u7uOKKK/LST+/eveOJJ56Im266KQ4dOhQREU8//XT84he/iAkTJsT5558fO3bsiKVLl8a+ffuSfQ0NDfGd73wnLz0AAAAAAAAAAAAAAFBcBQ/PZ7PZnJD86ZxqXTabzWdLMWbMmJg7d27cf//90dLSEhERO3fujIULF550/ZAhQ2Lu3LkxaNCgvPYBAAAAAAAAAAAAAEBxlPV0Az3l2muvjeeffz6mTp0a55133knX9OvXL26++eZYtGjRKb+KDwAAAAAAAAAAAADA2S+Tzfdn3c9Bra2tsXr16njnnXdi7969UVdXF4MHD47LL788Kisr835fS0tL3r+mDwBwtslkMlFbWxsR5h8AoDSYfwCAUmP+AQBKjfkHACg1x88/aVHe0w2cDWpqamLChAk93QYAAAAAAAAAAAAAAAVS1tMNAAAAAAAAAAAAAABAoQnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAA/4+9+w+yqj7zxP/cpn9gNwwtdgMjPyRAVJrEDeLPGEcDTElpNsuYHUjWtQgTBiTq+CPukqkZkHzjJiZbWtlBQzYhslYymyCJo3FkJAm/amIYUWCXRDRZoLGFlUaERuiGprHv94/UnOWiYDd972089/Wqouo8pz/POQ/89RT15gAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqlffGS1taWmLTpk2xZ8+eOHz4cAwaNCiGDRsW48ePjz59+hR1ls7Ozti2bVu88sorceDAgThy5EjU1NTEeeedFw0NDTFy5MjIZDJFnQkAAAAAAAAAAAAAgPwqani+sbExHnrooVi7dm10dHS86+f19fUxffr0mDNnTlRWVhZ0lkOHDsWSJUvipz/9abz55punPDd06ND47Gc/GzNmzIiqqqqCzgQAAAAAAAAAAAAAQGFkstlsthgvevrpp2PhwoXR1tb2vmcbGhpi0aJFMWzYsILMsnnz5rjrrruiubm5yz0f+tCH4tFHH43Ro0f3+P0tLS1RpD92AIBek8lkora2NiLsPwBAabD/AAClxv4DAJQa+w8AUGpO3H/Soijh+XXr1sVtt90WnZ2dyb2RI0fGlVdeGbW1tdHU1BRr1qyJo0ePJj8fM2ZMLFu2LPr165fXWV599dW45ZZb4vDhw8m9TCYTEyZMiHHjxkX//v3j4MGD8dvf/jY2b96c01tfXx9PPPFEnH/++T2awfIMAJQCf3kIAJQa+w8AUGrsPwBAqbH/AAClRnj+DOzduzemTJkSra2tf3hhJhPz5s2LGTNmRFlZWXJu//79cdddd8WGDRuSezfddFM8/PDDeZslm83GtGnTYsuWLcm9Cy+8MB566KG48MIL33V+69atce+990ZjY2Nyb/LkyfHoo4/2aA7LMwBQCvzlIQBQauw/AECpsf8AAKXG/gMAlJo0hufL3v9IzyxevDgJzkdE3HnnnTFz5syc4HxExMCBA2PJkiUxevTo5N6KFSti69ateZtly5YtOcH5AQMGxGOPPfaewfmIiIaGhnj88cejf//+yb1Vq1ZFc3Nz3mYCAAAAAAAAAAAAAKDwChqe37dvXyxfvjypR4wYEbNnzz7l+aqqqpg/f35SZ7PZWLx4cd7mWb9+fU49bdq0qK+vP23P4MGD48///M9zZnrhhRfyNhMAAAAAAAAAAAAAAIVX0PD8qlWroqOjI6mnTZsWFRUVp+25+uqrY9SoUUm9bt26aGtry8s8J38x/mMf+1iX+i699NKceu/evXmZBwAAAAAAAAAAAACA4ihoeH716tU59ZQpU7rUd8MNNyTX7e3t8fzzz+dlns7Ozpy6b9++Xeo755xzcupMJpOXeQAAAAAAAAAAAAAAKI6Chuc3btyYXNfV1cXw4cO71Dd+/Pic+sUXX8zLPMOGDcup33jjjS717d69O6e+4IIL8jIPAAAAAAAAAAAAAADFUbDwfHNzcxw6dCipx44d2+XehoaGnHr79u15menaa6/Nqf/pn/6pS30rVqxIrqurq+PKK6/MyzwAAAAAAAAAAAAAABRHwcLzO3bsyKnPP//8LvfW1dVFRUVFUjc2NuZlposvvjiuv/76pH7++efjRz/60Wl7Hn/88fiXf/mXpJ45c2b0798/L/MAAAAAAAAAAAAAAFAcBf3y/ImGDBnS5d5MJhODBw8+5bN64qtf/WoMHz48qRcuXBj33ntvvPDCC3H48OHIZrNx6NChWL9+fdx5553xta99LTn7yU9+MubOnZu3WQAAAAAAAAAAAAAAKI7yQj24ra0tp66uru5Wf01NTXJ9/PjxaG9vj6qqqh7PNWjQoFi2bFksXLgwfv7zn0dExLPPPhvPPvvsKXv69esXs2bNitmzZ0efPn16PEMmk+nxMwAAznYn7jz2HwCgFNh/AIBSY/8BAEqN/QcAKDVp3HmKFp7vbvD95POtra15Cc9HRJx33nmxaNGiWLduXSxYsCD27NlzyrMjRoyIBQsWxLXXXpuXd0dEDBgwIG/PAgD4ILD/AAClxv4DAJQa+w8AUGrsPwAAH0xlhXpwe3t7Tl1RUdGt/srKytM+ryeam5vj7rvvjjlz5pw2OB8R0dTUFLNmzYrPfvazsW3btrzNAAAAAAAAAAAAAABA8RTsy/MnfyW+o6OjW/3Hjh077fPO1Kuvvhqf//zn48CBAxHxh/9O4FOf+lTcfPPNcfHFF0f//v3j0KFDsXXr1viHf/iHePbZZyObzcbmzZvj3//7fx/f+9734vLLL+/RDAcPHoxsNpuP3w4AwFkrk8kkX9yw/wAApcD+AwCUGvsPAFBq7D8AQKk5cf9Ji4KF56urq3Pq7n45/uTzNTU1PZ7p4MGD8Zd/+ZdJcL6ioiIWLVoUn/zkJ3PODRw4MD7xiU/EJz7xibjpppvir/7qr6KjoyOOHDkSd9xxR/zjP/5j1NfXn/Ec2WzW8gwAlBT7DwBQauw/AECpsf8AAKXG/gMA8MFUVqgHnxyeb21t7Vb/iefLy8vz8uX573znO7F3796kvvvuu98VnD/ZxIkT46677krqlpaWWLx4cY9nAQAAAAAAAAAAAACgeAoWnh88eHBO3dzc3OXebDabc/7kZ52JbDYbTz31VFJXV1fHf/yP/7FLvbfeemvOPwZ45plnorOzs8czAQAAAAAAAAAAAABQHAULz48ePTqn3r17d5d79+3bFx0dHUk9atSoHs/T1NQU+/fvT+pLLrkk+vbt26Xevn37xkc/+tGkfvvtt+O1117r8UwAAAAAAAAAAAAAABRHwcLzgwYNiv79+yf1K6+80uXerVu35tT5CM+/9dZbOXVdXV23+uvr63PqAwcO9HgmAAAAAAAAAAAAAACKo2Dh+YiICRMmJNdvvfVWNDU1dalv06ZNOfXll1/e41mqqqpy6vb29m71HzlyJKeurq7u8UwAAAAAAAAAAAAAABRHQcPzkyZNyqmfe+65LvWtXLkyua6qqoprrrmmx7Ocd955OfX27du71X/y+YEDB/Z4JgAAAAAAAAAAAAAAiqOg4fmJEydGRUVFUi9fvjw6OjpO27N+/fpobGxM6uuuuy4vX3kfMmRIDBo0KKl37NgRr776apd6f/Ob38TOnTuTeujQoTnPAgAAAAAAAAAAAADg7FbQ8HxdXV1MmzYtqZuamuK73/3uKc+3t7fHAw88kNSZTCbmzp17yvO7du2Kiy66KPk1ceLE087zyU9+MqdeuHBhHDt27LQ97e3t8ZWvfCXn3vu9BwAAAAAAAAAAAACAs0tBw/MREXPmzImampqkXrRoUSxdujQ6Oztzzu3fvz9mzZoV27ZtS+7deOON0dDQkLdZZs+enfMl/M2bN8cXvvCFaGpqes/zO3bsiBkzZsRvfvOb5F5VVVXMmjUrbzMBAAAAAAAAAAAAAFB4mWw2my30S9auXRtz587NCcyPHDkyrrrqqqitrY3XXnst1qxZE0ePHk1+PmbMmFi2bFn069fvlM/dtWtXTJo0KamHDh0aq1evPu0sy5YtiwULFuTc69OnT0yYMCEaGhqiX79+cejQoXj55Zdj06ZN7wr5f+Mb34ipU6d25bd9Si0tLVGEP3YAgF6VyWSitrY2Iuw/AEBpsP8AAKXG/gMAlBr7DwBQak7cf9KivBgvuf766+PrX/96LFy4MI4cORIRETt37oydO3e+5/mxY8fGI488ctrg/JmaPn16RER87WtfS8L677zzTmzYsCE2bNhwyr7q6uqYP39+j4PzAAAAAAAAAAAAAAAUX1mxXjR16tR48sknY/LkyVFRUfGeZ+rr6+P222+PJ554IoYNG1awWaZPnx4/+9nP4nOf+1zU1NSc9my/fv3illtuiZ/97Gdx8803F2wmAAAAAAAAAAAAAAAKJ5Pthf8/6MCBA7Fp06bYs2dPtLa2Rl1dXQwfPjwuvfTS6NOnT1Fneeedd+J3v/td/P73v4+WlpZoa2uL6urqqK2tjYsuuiguvPDCvM/kv20CAEqB/7YSACg19h8AoNTYfwCAUmP/AQBKzYn7T1qU98ZLzz333Jg0aVJvvPpd+vTpEw0NDdHQ0NDbowAAAAAAAAAAAAAAUCBlvT0AAAAAAAAAAAAAAAAUmvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqVfeGy9taWmJTZs2xZ49e+Lw4cMxaNCgGDZsWIwfPz769OnTGyNFRMRbb70V//t//+94/fXXo7W1NSorK2PgwIExYsSIGDt2bNTU1PTabAAAAAAAAAAAAAAAnLmihucbGxvjoYceirVr10ZHR8e7fl5fXx/Tp0+POXPmRGVlZdHmWrVqVSxdujReeumlyGaz73mmrKwsxo0bF7feemv8u3/374o2GwAAAAAAAAAAAAAAPVdWrBc9/fTTcfPNN8cvfvGL9wzOR0S8+eab8cgjj8T06dNj165dBZ/pwIEDMWfOnPjiF78YL7744imD8xERnZ2d8Zvf/CbWrl1b8LkAAAAAAAAAAAAAAMivonx5ft26dfHlL385Ojs7k3sjR46MK6+8Mmpra6OpqSnWrFkTR48ejYiIrVu3xpw5c2LZsmXRr1+/gszU3NwcM2bMiMbGxpz7F154YVxyySVRV1cX77zzTuzduzd++9vfxvbt2wsyBwAAAAAAAAAAAAAAhVfw8PzevXvjnnvuSYLzmUwm5s2bFzNmzIiysv/34fv9+/fHXXfdFRs2bIiIiG3btsWCBQvi4YcfzvtM7e3tMXv27Jzg/GWXXRYLFiyIiy666D17Xn/99Xj66aejpaUl7/MAAAAAAAAAAAAAAFBYZe9/pGcWL14cra2tSX3nnXfGzJkzc4LzEREDBw6MJUuWxOjRo5N7K1asiK1bt+Z9pm9/+9vx6quvJvWnP/3p+OEPf3jK4HxExPDhw+OOO+6Iv/3bv837PAAAAAAAAAAAAAAAFFZBw/P79u2L5cuXJ/WIESNi9uzZpzxfVVUV8+fPT+psNhuLFy/O60zbtm2L73//+0k9bty4+PrXvx6ZTCav7wEAAAAAAAAAAAAA4OxR0PD8qlWroqOjI6mnTZsWFRUVp+25+uqrY9SoUUm9bt26aGtry9tMS5cuzZnpb/7mb6K8vDxvzwcAAAAAAAAAAAAA4OxT0PD86tWrc+opU6Z0qe+GG25Irtvb2+P555/Pyzytra2xYsWKpB47dmxMmDAhL88GAAAAAAAAAAAAAODsVdDw/MaNG5Prurq6GD58eJf6xo8fn1O/+OKLeZlnzZo1OV+xv+mmm/LyXAAAAAAAAAAAAAAAzm4FC883NzfHoUOHknrs2LFd7m1oaMipt2/fnpeZ/tf/+l859WWXXZaX5wIAAAAAAAAAAAAAcHYrL9SDd+zYkVOff/75Xe6tq6uLioqK6OjoiIiIxsbGvMz029/+NrkuLy9PAv3Nzc3x9NNPx+rVq2PXrl1x+PDhOPfcc2PYsGFx9dVXx7/9t/+2y1/NBwAAAAAAAAAAAADg7FOw8Hxzc3NOPWTIkC73ZjKZGDx4cOzates9n3WmTvyCfX19ffTt2zf+5//8n/Ff/+t/jba2tpyzR44cif/7f/9vbNiwIb797W/HZz/72fjP//k/R2VlZV5mAQAAAAAAAAAAAACgeAoWnj85jF5dXd2t/pqamuT6+PHj0d7eHlVVVWc8T2dnZxw6dCip6+vr41vf+lYsXrz4fXs7OjriBz/4Qbz88svxve99L/r163fGc0T84R8HAACk3Yk7j/0HACgF9h8AoNTYfwCAUmP/AQBKTRp3nqKF57sbfD/5fGtra4/C84cOHYpsNpvUjY2NsWXLloiIKC8vj+nTp8fUqVNj9OjRkclkYseOHfHUU0/Fj370ozh+/HhERGzatCn+5m/+Jv7bf/tvZzxHRMSAAQN61A8A8EFj/wEASo39BwAoNfYfAKDU2H8AAD6YChaeb29vz6krKiq61V9ZWXna53XXyWH+f/0KfVVVVSxevDiuueaanJ9/5CMfiY985CMxadKkuO222+Lo0aMREfHcc8/F6tWrY+LEiT2aBwAAAAAAAAAAAACA4ilYeP7kr8R3dHR0q//YsWOnfV5P5/lXd99997uC8ye6+uqr4957742vfe1ryb3vf//7PQrPHzx4MOcr+AAAaZTJZJIvbth/AIBSYP8BAEqN/QcAKDX2HwCg1Jy4/6RFwcLz1dXVOXV3vxx/8vmampq8zhPxh/8+6ZZbbnnf3s997nPxne98J/bv3x8RERs3boyWlpaora09o1my2azlGQAoKfYfAKDU2H8AgFJj/wEASo39BwDgg6msUA8+Oaze2trarf4Tz5eXl/f4y/N9+/aN8vLcfyvw8Y9/vEvPraysjE984hNJnc1mY/PmzT2aBwAAAAAAAAAAAACA4ilYeH7w4ME5dXNzc5d7s9lszvmTn5WvmT784Q93uffCCy/Mqbvz+wEAAAAAAAAAAAAAoHcVLDw/evTonHr37t1d7t23b190dHQk9ahRowoy04ABA7rce/LZgwcP5mUmAAAAAAAAAAAAAAAKr2Dh+UGDBkX//v2T+pVXXuly79atW3PqfIXnx4wZk1MfO3asy70nn62qqsrLTAAAAAAAAAAAAAAAFF7BwvMRERMmTEiu33rrrWhqaupS36ZNm3Lqyy+/PC/zXHHFFTl1c3Nzl3v37NmTU5977rl5mQkAAAAAAAAAAAAAgMIraHh+0qRJOfVzzz3Xpb6VK1cm11VVVXHNNdfkZZ5rrrkmqqurk/rkkP7pbN68OaduaGjIy0wAAAAAAAAAAAAAABReQcPzEydOjIqKiqRevnx5dHR0nLZn/fr10djYmNTXXXddTuC9JyorK2Py5MlJvWXLlvj973//vn3bt2+PjRs3JvWgQYPiwx/+cF5mAgAAAAAAAAAAAACg8Aoanq+rq4tp06YldVNTU3z3u9895fn29vZ44IEHkjqTycTcuXNPeX7Xrl1x0UUXJb8mTpz4vjN98YtfjPLy8qReuHDhaQP9x48fj4ULF0Y2m03u3Xrrre/7HgAAAAAAAAAAAAAAzh4FDc9HRMyZMydqamqSetGiRbF06dLo7OzMObd///6YNWtWbNu2Lbl34403RkNDQ17n+dCHPhTTp09P6o0bN8bcuXNj79697zr75ptvxu233x4bNmxI7g0dOjT+w3/4D3mdCQAAAAAAAAAAAACAwspkT/ykeoGsXbs25s6dmxOYHzlyZFx11VVRW1sbr732WqxZsyaOHj2a/HzMmDGxbNmy6Nev3ymfu2vXrpg0aVJSDx06NFavXv2+8xw7diw+//nPx8aNG5N7ffv2jWuuuSZGjx4dERE7duyI559/Po4cOZKcOeecc+Lv//7vY9y4cV37jZ9CS0tLFOGPHQCgV2UymaitrY0I+w8AUBrsPwBAqbH/AAClxv4DAJSaE/eftChKeD4i4qmnnoqFCxfmhNFPZezYsfHII4/EsGHDTnvuTMPzEX9YYO+99954/vnnu3S+vr4+Fi9eHB/96Ee7dP793m15BgDSzl8eAgClxv4DAJQa+w8AUGrsPwBAqUljeL6sWC+aOnVqPPnkkzF58uSoqKh4zzP19fVx++23xxNPPPG+wfmeqq2tje9///vxla98JcaMGXPac3PmzIlnn302L8F5AAAAAAAAAAAAAACKr2hfnj/RgQMHYtOmTbFnz55obW2Nurq6GD58eFx66aXRp0+fYo8TERGvvvpqbN++PZqbm+Odd96Jc889Nz784Q/HRz/60Sgry++/MfAvTwGAUuDLGwBAqbH/AAClxv4DAJQa+w8AUGrS+OX58t546bnnnhuTJk3qjVef0sUXXxwXX3xxb48BAAAAAAAAAAAAAEAB5PeT6gAAAAAAAAAAAAAAcBYSngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEi98t54aUtLS2zatCn27NkThw8fjkGDBsWwYcNi/Pjx0adPn94YCQAAAAAAAAAAAACAFCtqeL6xsTEeeuihWLt2bXR0dLzr5/X19TF9+vSYM2dOVFZWFnO0HEuXLo0HH3ww594VV1wRP/jBD3ppIgAAAAAAAAAAAAAAeqKsWC96+umn4+abb45f/OIX7xmcj4h4880345FHHonp06fHrl27ijVajl27dsXf/d3f9cq7AQAAAAAAAAAAAAAojKJ8eX7dunXx5S9/OTo7O5N7I0eOjCuvvDJqa2ujqakp1qxZE0ePHo2IiK1bt8acOXNi2bJl0a9fv2KMmLj//vujra2tqO8EAAAAAAAAAAAAAKCwCh6e37t3b9xzzz1JcD6TycS8efNixowZUVb2/z58v3///rjrrrtiw4YNERGxbdu2WLBgQTz88MOFHjHx1FNPxa9+9auIiKivr48333yzaO8GAAAAAAAAAAAAAKBwyt7/SM8sXrw4Wltbk/rOO++MmTNn5gTnIyIGDhwYS5YsidGjRyf3VqxYEVu3bi30iBHxh/D+gw8+GBF/CPj/9V//dVHeCwAAAAAAAAAAAABA4RU0PL9v375Yvnx5Uo8YMSJmz559yvNVVVUxf/78pM5ms7F48eJCjpj42te+FgcOHIiIiOnTp8e/+Tf/pijvBQAAAAAAAAAAAACg8Aoanl+1alV0dHQk9bRp06KiouK0PVdffXWMGjUqqdetWxdtbW0FmzEi4p//+Z/jmWeeiYiI+vr6+NKXvlTQ9wEAAAAAAAAAAAAAUFwFDc+vXr06p54yZUqX+m644Ybkur29PZ5//vm8znWitra2uP/++5P6r//6r+OP/uiPCvY+AAAAAAAAAAAAAACKr6Dh+Y0bNybXdXV1MXz48C71jR8/Pqd+8cUX8zrXib71rW/F7t27IyLiE5/4RNx0000FexcAAAAAAAAAAAAAAL2jYOH55ubmOHToUFKPHTu2y70NDQ059fbt2/M214m2bNkSP/zhDyMioqqqKucL9AAAAAAAAAAAAAAApEfBwvM7duzIqc8///wu99bV1UVFRUVSNzY25m2uf3X8+PGYP39+vPPOOxERMXfu3BgxYkTe3wMAAAAAAAAAAAAAQO8r6JfnTzRkyJAu92YymRg8ePApn5UPS5YsiVdffTUiIkaPHh1f+MIX8v4OAAAAAAAAAAAAAADODuWFenBbW1tOXV1d3a3+mpqa5Pr48ePR3t4eVVVVeZlt586d8e1vfzsi/hDU/8pXvhKVlZV5eXZXZDKZor0LAKC3nLjz2H8AgFJg/wEASo39BwAoNfYfAKDUpHHnKVp4vrvB95PPt7a25iU8n81mY/78+dHe3h4RETfffHNcfvnlPX5udwwYMKCo7wMA6G32HwCg1Nh/AIBSY/8BAEqN/QcA4IOprFAP/tdw+r+qqKjoVv/JX4I/+Xln6ic/+Uls2LAhIiLOPffc+E//6T/l5bkAAAAAAAAAAAAAAJy9Cvbl+ZO/Et/R0dGt/mPHjp32eWfizTffjG9+85tJPW/evDj33HN7/NzuOnjwYGSz2aK/FwCgmDKZTPLFDfsPAFAK7D8AQKmx/wAApcb+AwCUmhP3n7QoWHi+uro6p+7ul+NPPl9TU9Pjmb761a/G22+/HRERV1xxRfzZn/1Zj595JrLZrOUZACgp9h8AoNTYfwCAUmP/AQBKjf0HAOCDqaxQDz45PN/a2tqt/hPPl5eX9/jL86tWrYqVK1dGRERFRUV85Stf6dHzAAAAAAAAAAAAAAD44ChYeH7w4ME5dXNzc5d7s9lszvmTn3UmHnzwweR69uzZMWrUqB4/EwAAAAAAAAAAAACAD4byQj149OjROfXu3bu73Ltv377o6OhI6nwE3Q8cOJBcf+c734nvfOc73erfsGFDNDQ0JPXll18ejz/+eI/nAgAAAAAAAAAAAACg8AoWnh80aFD0798/Dh06FBERr7zySpd7t27dmlPn+yvx77zzTo/7Ojs78zUOAAAAAAAAAAAAAAAFVlbIh0+YMCG5fuutt6KpqalLfZs2bcqpL7/88rzOBQAAAAAAAAAAAABAaSnYl+cjIiZNmhRr165N6ueeey5mz579vn0rV65MrquqquKaa67p8SwvvfRSt87v2rUrJk2alNRXXHFF/OAHP+jxHAAAAAAAAAAAAAAAFF9Bvzw/ceLEqKioSOrly5dHR0fHaXvWr18fjY2NSX3ddddFdXV1wWYEAAAAAAAAAAAAACD9Chqer6uri2nTpiV1U1NTfPe73z3l+fb29njggQeSOpPJxNy5c095fteuXXHRRRclvyZOnJifwQEAAAAAAAAAAAAASJWChucjIubMmRM1NTVJvWjRoli6dGl0dnbmnNu/f3/MmjUrtm3blty78cYbo6GhodAjAgAAAAAAAAAAAACQcuWFfsHgwYPj4Ycfjrlz50ZnZ2dks9l48MEH48c//nFcddVVUVtbG6+99lqsWbMmjh49mvSNGTMm/r//7/8r9HgAAAAAAAAAAAAAAJSAgofnIyKuv/76+PrXvx4LFy6MI0eORETEzp07Y+fOne95fuzYsfHII49Ev379ijEeAAAAAAAAAAAAAAApV1asF02dOjWefPLJmDx5clRUVLznmfr6+rj99tvjiSeeiGHDhhVrNAAAAAAAAAAAAAAAUi6TzWazxX7pgQMHYtOmTbFnz55obW2Nurq6GD58eFx66aXRp0+fYo9TdC0tLdELf+wAAEWVyWSitrY2Iuw/AEBpsP8AAKXG/gMAlBr7DwBQak7cf9KivDdeeu6558akSZN649UAAAAAAAAAAAAAAJSgst4eAAAAAAAAAAAAAAAACk14HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQr742XtrS0xKZNm2LPnj1x+PDhGDRoUAwbNizGjx8fffr0Kdochw8fjv/zf/5P7NixI1paWqKjoyP+6I/+KIYMGRIf+9jHYuDAgUWbBQAAAAAAAAAAAACAwilqeL6xsTEeeuihWLt2bXR0dLzr5/X19TF9+vSYM2dOVFZWFmSG3/zmN/Hzn/88fv3rX8fWrVujs7PzlGcvueSSmDFjRtx0002RyWQKMg8AAAAAAAAAAAAAAIWXyWaz2WK86Omnn46FCxdGW1vb+55taGiIRYsWxbBhw/I6w8yZM+PXv/51t/uuvvrq+OY3vxmDBg3KyxwtLS1RpD92AIBek8lkora2NiLsPwBAabD/AAClxv4DAJQa+w8AUGpO3H/Soihfnl+3bl18+ctfzvnK+8iRI+PKK6+M2traaGpqijVr1sTRo0cjImLr1q0xZ86cWLZsWfTr1y9vc+zfv/9d984///z42Mc+FoMGDYrq6urYt29fbNiwIXbu3JmcWb9+fXz+85+Pv//7v49zzz03b/MAAAAAAAAAAAAAAFAcBQ/P7927N+65554kOJ/JZGLevHkxY8aMKCsrS87t378/7rrrrtiwYUNERGzbti0WLFgQDz/8cN5nqquriz/7sz+Lz3zmM/GhD33oXT/PZrOxcuXKWLBgQRw8eDAiIrZv3x73339//N3f/V3e5wEAAAAAAAAAAAAAoLDK3v9IzyxevDhaW1uT+s4774yZM2fmBOcjIgYOHBhLliyJ0aNHJ/dWrFgRW7duzdssAwcOjC9/+cuxZs2auO+++94zOB/xh4D/lClTYunSpXHOOeck91euXBlbtmzJ2zwAAAAAAAAAAAAAABRHQcPz+/bti+XLlyf1iBEjYvbs2ac8X1VVFfPnz0/qbDYbixcvzts83/ve92LmzJlRWVnZpfPjxo2LGTNm5NxbuXJl3uYBAAAAAAAAAAAAAKA4ChqeX7VqVXR0dCT1tGnToqKi4rQ9V199dYwaNSqp161bF21tbXmZp7y8vNs9N910U07ty/MAAAAAAAAAAAAAAB88BQ3Pr169OqeeMmVKl/puuOGG5Lq9vT2ef/75vM7VHRdccEFO/dZbb/XSJAAAAAAAAAAAAAAAnKmChuc3btyYXNfV1cXw4cO71Dd+/Pic+sUXX8zrXN3R2tqaU5/J1+sBAAAAAAAAAAAAAOhdBQvPNzc3x6FDh5J67NixXe5taGjIqbdv3563ubrrd7/7XU49ZMiQXpoEAAAAAAAAAAAAAIAzVbDw/I4dO3Lq888/v8u9dXV1UVFRkdSNjY15m6u7fvazn+XUV111VS9NAgAAAAAAAAAAAADAmSrol+dP1J0vtmcymRg8ePApn1UsO3fujGeeeSap+/TpE3/6p3/aK7MAAAAAAAAAAAAAAHDmygv14La2tpy6urq6W/01NTXJ9fHjx6O9vT2qqqryMltXdHZ2xt/+7d9GR0dHcm/q1KkxfPjwHj87k8n0+BkAAGe7E3ce+w8AUArsPwBAqbH/AAClxv4DAJSaNO48RQvPdzf4fvL51tbWoobnH3300XjxxReTeuDAgXHffffl5dkDBgzIy3MAAD4o7D8AQKmx/wAApcb+AwCUGvsPAMAHU1mhHtze3p5TV1RUdKu/srLytM8rpF/+8pfx6KOPJnUmk4n/8l/+SwwcOLBoMwAAAAAAAAAAAAAAkD8F+/L8yV+J7+jo6Fb/sWPHTvu8Qtm4cWN86Utfimw2m9y74447YuLEiXl7x8GDB3OeDwCQRplMJvnihv0HACgF9h8AoNTYfwCAUmP/AQBKzYn7T1oULDxfXV2dU3f3y/Enn6+pqenxTO/nd7/7Xdx2221x9OjR5N7nPve5uOOOO/L6nmw2a3kGAEqK/QcAKDX2HwCg1Nh/AIBSY/8BAPhgKivUg08Oz7e2tnar/8Tz5eXlBf/yfFNTU3zhC1+It99+O7l34403xoIFCwr6XgAAAAAAAAAAAAAACq9g4fnBgwfn1M3NzV3uzWazOedPfla+NTc3x+c///l48803k3vXXnttfPOb34yysoL9EQEAAAAAAAAAAAAAUCQFS4aPHj06p969e3eXe/ft2xcdHR1JPWrUqLzNdbL9+/fHzJkzc+a77LLL4pFHHomKioqCvRcAAAAAAAAAAAAAgOIpWHh+0KBB0b9//6R+5ZVXuty7devWnLpQ4fnDhw/HrFmzYvv27cm9cePGxX//7/89+vbtW5B3AgAAAAAAAAAAAABQfAULz0dETJgwIbl+6623oqmpqUt9mzZtyqkvv/zyvM4VEXH06NGYM2dOvPzyy8m9MWPGxJIlS6Jfv355fx8AAAAAAAAAAAAAAL2noOH5SZMm5dTPPfdcl/pWrlyZXFdVVcU111yT17k6Ojrir/7qr+Kll15K7o0YMSIee+yxGDhwYF7fBQAAAAAAAAAAAABA7ytoeH7ixIlRUVGR1MuXL4+Ojo7T9qxfvz4aGxuT+rrrrovq6uq8zdTZ2Rnz5s2LdevWJfeGDBkSS5cujcGDB+ftPQAAAAAAAAAAAAAAnD0KGp6vq6uLadOmJXVTU1N897vfPeX59vb2eOCBB5I6k8nE3LlzT3l+165dcdFFFyW/Jk6c+L4zLVy4MJ599tmkPu+882Lp0qUxbNiw9+0FAAAAAAAAAAAAAOCDqaDh+YiIOXPmRE1NTVIvWrQoli5dGp2dnTnn9u/fH7NmzYpt27Yl92688cZoaGjI2ywPP/xwLFu2LKkHDBgQjz32WIwaNSpv7wAAAAAAAAAAAAAA4OyTyWaz2UK/ZO3atTF37tycwPzIkSPjqquuitra2njttddizZo1cfTo0eTnY8aMiWXLlkW/fv1O+dxdu3bFpEmTknro0KGxevXqU56/6KKLcupMJhNlZd3/9wNbt27tds+JWlpaogh/7AAAvSqTyURtbW1E2H8AgNJg/wEASo39BwAoNfYfAKDUnLj/pEV5MV5y/fXXx9e//vVYuHBhHDlyJCIidu7cGTt37nzP82PHjo1HHnnktMH5fMhms/HOO+8U9B0AAAAAAAAAAAAAAPS+7n92/QxNnTo1nnzyyZg8eXJUVFS855n6+vq4/fbb44knnohhw4YVazQAAAAAAAAAAAAAAFIuk+2F/z/owIEDsWnTptizZ0+0trZGXV1dDB8+PC699NLo06dPsccpOv9tEwBQCvy3lQBAqbH/AAClxv4DAJQa+w8AUGpO3H/Sorw3XnruuefGpEmTeuPVAAAAAAAAAAAAAACUoLLeHgAAAAAAAAAAAAAAAApNeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1ynvjpS0tLbFp06bYs2dPHD58OAYNGhTDhg2L8ePHR58+fYo+T2tra7z00kvR3NwcLS0tMXDgwBg6dGhMmDAhKisriz4PAAAAAAAAAAAAAAD5VdTwfGNjYzz00EOxdu3a6OjoeNfP6+vrY/r06TFnzpyihNb37t0bDz/8cKxcuTLa2tre9fMBAwbEpz/96bj77rujX79+BZ8HAAAAAAAAAAAAAIDCKCvWi55++um4+eab4xe/+MV7BucjIt5888145JFHYvr06bFr166CzvOrX/0qPv3pT8c//MM/vGdwPiLi4MGD8YMf/CCmTp0ar7zySkHnAQAAAAAAAAAAAACgcDLZbDZb6JesW7cubrvttujs7EzujRw5Mq688sqora2NpqamWLNmTRw9ejT5+ZgxY2LZsmUF+eL7yy+/HLfcckscOXIkuTdo0KD4kz/5k6irq4s33ngj1qxZE2+//Xby8/r6+vjJT34SQ4YM6fH7W1paogh/7AAAvSqTyURtbW1E2H8AgNJg/wEASo39BwAoNfYfAKDUnLj/pEXBw/N79+6NKVOmRGtr6x9emMnEvHnzYsaMGVFW9v8+fL9///646667YsOGDcm9m266KR5++OG8znP06NGYMmVKvPHGG8m9v/iLv4h77rknKisrk3uHDx+O+fPnx4oVK5J748ePjx//+Mc9nsHyDACUAn95CACUGvsPAFBq7D8AQKmx/wAApSaN4fmy9z/SM4sXL06C8xERd955Z8ycOTMnOB8RMXDgwFiyZEmMHj06ubdixYrYunVrXuf54Q9/mBOc/8xnPhPz5s3LCc5HRPTr1y8eeuihuPrqq5N7mzdvjl/+8pd5nQcAAAAAAAAAAAAAgMIraHh+3759sXz58qQeMWJEzJ49+5Tnq6qqYv78+UmdzWZj8eLFeZuno6MjlixZktT9+/ePefPmnfJ8WVlZfOUrX8kJ+n/729/O2zwAAAAAAAAAAAAAABRHQcPzq1atio6OjqSeNm1aVFRUnLbn6quvjlGjRiX1unXroq2tLS/zvPDCC3HgwIGk/tSnPhUDBgw4bc8FF1wQH//4x5P65Zdfjtdffz0v8wAAAAAAAAAAAAAAUBwFDc+vXr06p54yZUqX+m644Ybkur29PZ5//vmCzHPie07n5LlXrVqVl3kAAAAAAAAAAAAAACiOgobnN27cmFzX1dXF8OHDu9Q3fvz4nPrFF1/MyzwvvfRSct2nT5+45JJLutR36aWXFmQeAAAAAAAAAAAAAACKo2Dh+ebm5jh06FBSjx07tsu9DQ0NOfX27dt7PE9nZ2fs3LkzqS+44IKoqanpUu+oUaOib9++eZ0HAAAAAAAAAAAAAIDiKVh4fseOHTn1+eef3+Xeurq6qKioSOrGxsYez7N79+5ob28/o3kymUwMGTIkqV9//fXo6Ojo8UwAAAAAAAAAAAAAABRHQb88f6ITw+fvJ5PJxODBg0/5rGLPExE58xw/fjzeeuutHs8EAAAAAAAAAAAAAEBxlBfqwW1tbTl1dXV1t/pramqS6+PHj0d7e3tUVVWd8Tytra15m+e9ntcdmUzmjHsBAD4oTtx57D8AQCmw/wAApcb+AwCUGvsPAFBq0rjzFC08393g+8nnW1tbexSez/c8Jz+vOwYMGHDGvQAAH0T2HwCg1Nh/AIBSY/8BAEqN/QcA4IOprFAPbm9vz6krKiq61V9ZWXna533Q5wEAAAAAAAAAAAAAoHgKFp4/+UvtHR0d3eo/duzYaZ/3QZ8HAAAAAAAAAAAAAIDiKVh4vrq6Oqfu7pfaTz5fU1NzVs1z8vMAAAAAAAAAAAAAADh7FS0839ra2q3+E8+Xl5f3+EvvJ4fvezLPez0PAAAAAAAAAAAAAICzV8HC84MHD86pm5ubu9ybzWZzzp/8rGLPExGxZ8+e5Lq8vDzOO++8Hs8EAAAAAAAAAAAAAEBxFCw8P3r06Jx69+7dXe7dt29fdHR0JPWoUaN6PM/QoUOjb9++ZzRPNpvNCc+PGDEiKioqejwTAAAAAAAAAAAAAADFUbDw/KBBg6J///5J/corr3S5d+vWrTl1PsLzZWVlMXLkyKRuamqK1tbWLvVu37492tvb8zoPAAAAAAAAAAAAAADFU7DwfETEhAkTkuu33normpqautS3adOmnPryyy/P+zzvvPNObNmypUt9mzdvLsg8AAAAAAAAAAAAAAAUR0HD85MmTcqpn3vuuS71rVy5MrmuqqqKa665plfnOfncyc8BAAAAAAAAAAAAAODsVtDw/MSJE6OioiKply9fHh0dHaftWb9+fTQ2Nib1ddddF9XV1XmZ54orroiBAwcm9bPPPhtvv/32aXtee+21+PWvf53U48aNi+HDh+dlHgAAAAAAAAAAAAAAiqOg4fm6urqYNm1aUjc1NcV3v/vdU55vb2+PBx54IKkzmUzMnTv3lOd37doVF110UfJr4sSJp52noqIiZs2aldSHDh2KBx988JTnOzs74/7774/Ozs7k3he/+MXTvgMAAAAAAAAAAAAAgLNPQcPzERFz5syJmpqapF60aFEsXbo0J5AeEbF///6YNWtWbNu2Lbl34403RkNDQ17nueWWW+KP//iPk/qnP/1pfOMb34hjx47lnDt8+HB86UtfivXr1yf3xo8fH5MnT87rPAAAAAAAAAAAAAAAFF4mm81mC/2StWvXxty5c3MC8yNHjoyrrroqamtr47XXXos1a9bE0aNHk5+PGTMmli1bFv369Tvlc3ft2hWTJk1K6qFDh8bq1avfd56XX345brnlljhy5Ehyb9CgQXHdddfFeeedF3v27InVq1fH22+/nfy8vr4+fvKTn8SQIUO6/PsGAAAAAAAAAAAAAODsUJTwfETEU089FQsXLswJrJ/K2LFj45FHHolhw4ad9tyZhucjIv75n/857rvvvmhpaXnfs8OGDYtFixbl/Sv4AAAAAAAAAAAAAAAUR1mxXjR16tR48sknY/LkyVFRUfGeZ+rr6+P222+PJ5544n2D8z117bXXxjPPPBNTp06Nc8455z3PDBgwIG699dZ4+umnBecBAAAAAAAAAAAAAD7Aivbl+RMdOHAgNm3aFHv27InW1taoq6uL4cOHx6WXXhp9+vQp9jjR2toaL730Urzxxhtx8ODBGDhwYAwdOjQuu+yyqKysLPo8AAAAAAAAAAAAAADkV6+E5wEAAAAAAAAAAAAAoJjKensAAAAAAAAAAAAAAAAoNOF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUq+8twc4G7S2tsZLL70Uzc3N0dLSEgMHDoyhQ4fGhAkTorKysrfHAwAAAAAAAAAAAACgh4oWnm9tbY2tW7fGli1bYsuWLfGb3/wmdu/enfx86NChsXr16mKNExERe/fujYcffjhWrlwZbW1t7/r5gAED4tOf/nTcfffd0a9fv6LOBgAAAAAAAAAAAABA/mSy2Wy2kC9YunRpPPnkk7Ft27bo7Ow85blih+d/9atfxX333RcHDhx437PDhw+PRYsWxdixY4swGQAAAAAAAAAAAAAA+VbwL8+/+OKL8fvf/77Qr+mWl19+Oe644444cuRIcm/QoEHxJ3/yJ1FXVxdvvPFGrFmzJt5+++2IiHj99dfjL//yL+MnP/lJDBkypLfGBgAAAAAAAAAAAADgDBU8PP9eqqurY9y4cfHyyy9HW1tbUd999OjRuP3223OC83/xF38R99xzT1RWVib3Dh8+HPPnz48VK1ZERMSbb74Zd999d/z4xz8u6rwAAAAAAAAAAAAAAPRcwcPzVVVVcckll8RHP/rR+MhHPhIf/ehHY/To0VFWVhYTJ04senj+hz/8YbzxxhtJ/ZnPfCbmzZv3rnP9+vWLhx56KA4cOBDr16+PiIjNmzfHL3/5y5g8eXLR5gUAAAAAAAAAAAAAoOcy2Ww221svnzhxYuzevTsiIoYOHRqrV68u6Ps6Ojri2muvjQMHDkRERP/+/WPVqlUxYMCAU/a89tprMWXKlOjs7IyIiHHjxsWTTz5Z0DkBAAAAAAAAAAAAAMivst4eoJheeOGFJDgfEfGpT33qtMH5iIgLLrggPv7xjyf1yy+/HK+//nrBZgQAAAAAAAAAAAAAIP9KKjx/8pftb7jhhi71TZkyJadetWpV3mYCAAAAAAAAAAAAAKDwSio8/9JLLyXXffr0iUsuuaRLfZdeemlO/eKLL+Z1LgAAAAAAAAAAAAAACqtkwvOdnZ2xc+fOpL7ggguipqamS72jRo2Kvn37JvX27dvzPR4AAAAAAAAAAAAAAAVUMuH53bt3R3t7e1Kff/75Xe7NZDIxZMiQpH799dejo6Mjr/MBAAAAAAAAAAAAAFA4JROeb25uzqlPDMN3xeDBg5Pr48ePx1tvvZWXuQAAAAAAAAAAAAAAKLySCc+3trbm1NXV1d3qr6mpOe3zAAAAAAAAAAAAAAA4e5VMeL6trS2nrqqq6lb/yedPfh4AAAAAAAAAAAAAAGevkgnPt7e359QVFRXd6q+srDzt8wAAAAAAAAAAAAAAOHuV9/YAxXLyl+M7Ojq61X/s2LHTPq87Dh48GNls9oz7AQA+CDKZTAwYMCAi7D8AQGmw/wAApcb+AwCUGvsPAFBqTtx/0qJkwvPV1dU5dXe/HH/y+ZOf1x3ZbNbyDACUFPsPAFBq7D8AQKmx/wAApcb+AwDwwVTW2wMUS01NTU7d2trarf6Tz5/8PAAAAAAAAAAAAAAAzl4lE54fPHhwTt3c3Nyt/j179iTX5eXlcd555+VlLgAAAAAAAAAAAAAACq9kwvNDhw6Nvn37JvXu3bu73JvNZnPC8yNGjIiKioq8zgcAAAAAAAAAAAAAQOGUTHi+rKwsRo4cmdRNTU3R2trapd7t27dHe3t7Uo8aNSrf4wEAAAAAAAAAAAAAUEAlE56PiJgwYUJy/c4778SWLVu61Ld58+ac+vLLL8/rXAAAAAAAAAAAAAAAFFZJhecnTZqUUz/33HNd6jv53MnPAQAAAAAAAAAAAADg7FZS4fkrrrgiBg4cmNTPPvtsvP3226ftee211+LXv/51Uo8bNy6GDx9esBkBAAAAAAAAAAAAAMi/D3R4fteuXXHRRRclvyZOnHja8xUVFTFr1qykPnToUDz44IOnPN/Z2Rn3339/dHZ2Jve++MUv9nxwAAAAAAAAAAAAAACK6gMdnj8Tt9xyS/zxH/9xUv/0pz+Nb3zjG3Hs2LGcc4cPH44vfelLsX79+uTe+PHjY/LkyUWbFQAAAAAAAAAAAACA/Cgv9At2794df/qnf/qeP3vnnXdyzjU0NLznuf/xP/5HXHHFFXmZp2/fvvHoo4/GLbfcEkeOHImIiMceeyz+8R//Ma677ro477zzYs+ePbF69ep4++23k776+vr41re+lZcZAAAAAAAAAAAAAAAoroKH57PZbE5I/nROdS6bzeZzpBg3blwsWrQo7rvvvmhpaYmIiL1798by5cvf8/ywYcNi0aJFMWTIkLzOAQAAAAAAAAAAAABAcZT19gC95dprr41nnnkmpk6dGuecc857nhkwYEDceuut8fTTT5/yq/gAAAAAAAAAAAAAAJz9Mtl8f9b9A6i1tTVeeumleOONN+LgwYMxcODAGDp0aFx22WVRWVmZ9/e1tLTk/Wv6AABnm0wmE7W1tRFh/wEASoP9BwAoNfYfAKDU2H8AgFJz4v6TFuW9PcDZoKamJq677rreHgMAAAAAAAAAAAAAgAIp6+0BAAAAAAAAAAAAAACg0ITnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUq+8N17a0tISmzZtij179sThw4dj0KBBMWzYsBg/fnz06dOnqLN0dnbGtm3b4pVXXokDBw7EkSNHoqamJs4777xoaGiIkSNHRiaTKepMAAAAAAAAAAAAAADkV1HD842NjfHQQw/F2rVro6Oj410/r6+vj+nTp8ecOXOisrKyoLMcOnQolixZEj/96U/jzTffPOW5oUOHxmc/+9mYMWNGVFVVFXQmAAAAAAAAAAAAAAAKI5PNZrPFeNHTTz8dCxcujLa2tvc929DQEIsWLYphw4YVZJbNmzfHXXfdFc3NzV3u+dCHPhSPPvpojB49usfvb2lpiSL9sQMA9JpMJhO1tbURYf8BAEqD/QcAKDX2HwCg1Nh/AIBSc+L+kxZFCc+vW7cubrvttujs7EzujRw5Mq688sqora2NpqamWLNmTRw9ejT5+ZgxY2LZsmXRr1+/vM7y6quvxi233BKHDx9O7mUymZgwYUKMGzcu+vfvHwcPHozf/va3sXnz5pze+vr6eOKJJ+L888/v0QyWZwCgFPjLQwCg1Nh/AIBSY/8BAEqN/QcAKDXC82dg7969MWXKlGhtbf3DCzOZmDdvXsyYMSPKysqSc/v374+77rorNmzYkNy76aab4uGHH87bLNlsNqZNmxZbtmxJ7l144YXx0EMPxYUXXviu81u3bo177703Ghsbk3uTJ0+ORx99tEdzWJ4BgFLgLw8BgFJj/wEASo39BwAoNfYfAKDUpDE8X/b+R3pm8eLFSXA+IuLOO++MmTNn5gTnIyIGDhwYS5YsidGjRyf3VqxYEVu3bs3bLFu2bMkJzg8YMCAee+yx9wzOR0Q0NDTE448/Hv3790/urVq1Kpqbm/M2EwAAAAAAAAAAAAAAhVfQ8Py+ffti+fLlST1ixIiYPXv2Kc9XVVXF/PnzkzqbzcbixYvzNs/69etz6mnTpkV9ff1pewYPHhx//ud/njPTCy+8kLeZAAAAAAAAAAAAAAAovIKG51etWhUdHR1JPW3atKioqDhtz9VXXx2jRo1K6nXr1kVbW1te5jn5i/Ef+9jHutR36aWX5tR79+7NyzwAAAAAAAAAAAAAABRHQcPzq1evzqmnTJnSpb4bbrghuW5vb4/nn38+L/N0dnbm1H379u1S3znnnJNTZzKZvMwDAAAAAAAAAAAAAEBxFDQ8v3HjxuS6rq4uhg8f3qW+8ePH59QvvvhiXuYZNmxYTv3GG290qW/37t059QUXXJCXeQAAAAAAAAAAAAAAKI6Cheebm5vj0KFDST127Ngu9zY0NOTU27dvz8tM1157bU79T//0T13qW7FiRXJdXV0dV155ZV7mAQAAAAAAAAAAAACgOAoWnt+xY0dOff7553e5t66uLioqKpK6sbExLzNdfPHFcf311yf1888/Hz/60Y9O2/P444/Hv/zLvyT1zJkzo3///nmZBwAAAAAAAAAAAACA4ijol+dPNGTIkC73ZjKZGDx48Cmf1RNf/epXY/jw4Um9cOHCuPfee+OFF16Iw4cPRzabjUOHDsX69evjzjvvjK997WvJ2U9+8pMxd+7cvM0CAAAAAAAAAAAAAEBxlBfqwW1tbTl1dXV1t/pramqS6+PHj0d7e3tUVVX1eK5BgwbFsmXLYuHChfHzn/88IiKeffbZePbZZ0/Z069fv5g1a1bMnj07+vTp0+MZMplMj58BAHC2O3Hnsf8AAKXA/gMAlBr7DwBQauw/AECpSePOU7TwfHeD7yefb21tzUt4PiLivPPOi0WLFsW6detiwYIFsWfPnlOeHTFiRCxYsCCuvfbavLw7IuL/Z+/eg6yszzyBP6fpC+luhqbtBkYuEiAiTXSDiJeoowGmpDSTZcwsJOtY6IRAiBrNZddMzWBwx1WTLa3sYIJrTJhUMjtBEqMxujIJt5oYNiiwixFNlmsLK41cGqGBpqXP/pGadzko2E2fcxrf8/lUUXWe9/wuD/3XU9SXt/v375+3swAA3g/MPwBAqTH/AAClxvwDAJQa8w8AwPtTWaEObm9vz6krKiq6tb+ysvK05/VES0tL3HXXXTFnzpzTBucjIpqbm2PWrFnxqU99KjZt2pS3HgAAAAAAAAAAAAAAKJ6CvXn+5LfEd3R0dGv/sWPHTnvemXrttdfilltuif3790fEH36dwMc//vG48cYb44ILLoh+/frFwYMHY+PGjfHTn/40nn322chms7F+/fr4i7/4i/jOd74TEydO7FEPBw4ciGw2m4+/DgDAWSuTySRv3DD/AAClwPwDAJQa8w8AUGrMPwBAqTlx/kmLgoXnq6urc+ruvjn+5PU1NTU97unAgQPx2c9+NgnOV1RUxIIFC+JjH/tYzrr6+vq46qqr4qqrroobbrghvvCFL0RHR0ccOXIkbr/99vj5z38ejY2NZ9xHNps1PAMAJcX8AwCUGvMPAFBqzD8AQKkx/wAAvD+VFergk8PzbW1t3dp/4vry8vK8vHn+0Ucfjd27dyf1XXfd9Y7g/MkmTZoUd955Z1K3trbGwoULe9wLAAAAAAAAAAAAAADFU7Dw/KBBg3LqlpaWLu/NZrM5608+60xks9l46qmnkrq6ujr+8i//skt7b7755pz/DPDMM89EZ2dnj3sCAAAAAAAAAAAAAKA4ChaeHzVqVE69c+fOLu/ds2dPdHR0JPXIkSN73E9zc3Ps27cvqS+66KLo27dvl/b27ds3LrzwwqR+6623Yvv27T3uCQAAAAAAAAAAAACA4ihYeH7gwIHRr1+/pH711Ve7vHfjxo05dT7C83v37s2pGxoaurW/sbExp96/f3+PewIAAAAAAAAAAAAAoDgKFp6PiJgwYULyee/evdHc3NylfevWrcupJ06c2ONeqqqqcur29vZu7T9y5EhOXV1d3eOeAAAAAAAAAAAAAAAojoKG5ydPnpxTP//8813at3Tp0uRzVVVVXHnllT3u5ZxzzsmpN2/e3K39J6+vr6/vcU8AAAAAAAAAAAAAABRHQcPzkyZNioqKiqResmRJdHR0nHbP6tWrY+vWrUl9zTXX5OUt74MHD46BAwcm9ZYtW+K1117r0t6XX345tm3bltRDhgzJOQsAAAAAAAAAAAAAgLNbQcPzDQ0NMX369KRubm6Oxx577JTr29vb47777kvqTCYTc+fOPeX6HTt2xJgxY5I/kyZNOm0/H/vYx3Lq+fPnx7Fjx067p729Pe69996cZ+91DwAAAAAAAAAAAAAAZ5eChucjIubMmRM1NTVJvWDBgli0aFF0dnbmrNu3b1/MmjUrNm3alDy7/vrro6mpKW+9zJ49O+dN+OvXr4/PfOYz0dzc/K7rt2zZEjNnzoyXX345eVZVVRWzZs3KW08AAAAAAAAAAAAAABReJpvNZgt9ycqVK2Pu3Lk5gfkRI0bE5ZdfHnV1dbF9+/ZYsWJFHD16NPl+9OjRsXjx4qitrT3luTt27IjJkycn9ZAhQ2L58uWn7WXx4sVxzz335Dzr06dPTJgwIZqamqK2tjYOHjwYr7zySqxbt+4dIf+vf/3rMW3atK78tU+ptbU1ivBjBwDoVZlMJurq6iLC/AMAlAbzDwBQasw/AECpMf8AAKXmxPknLcqLccm1114bDzzwQMyfPz+OHDkSERHbtm2Lbdu2vev6sWPHxiOPPHLa4PyZmjFjRkRE3H///UlY//jx47FmzZpYs2bNKfdVV1fHvHnzehycBwAAAAAAAAAAAACg+MqKddG0adPiySefjClTpkRFRcW7rmlsbIzbbrstnnjiiRg6dGjBepkxY0b87Gc/i09/+tNRU1Nz2rW1tbVx0003xc9+9rO48cYbC9YTAAAAAAAAAAAAAACFk8n2wu8P2r9/f6xbty527doVbW1t0dDQEMOGDYuLL744+vTpU9Rejh8/Hr/73e/i97//fbS2tsbhw4ejuro66urqYsyYMXH++efnvSe/tgkAKAV+bSUAUGrMPwBAqTH/AAClxvwDAJSaE+eftCjvjUsHDBgQkydP7o2r36FPnz7R1NQUTU1Nvd0KAAAAAAAAAAAAAAAFUtbbDQAAAAAAAAAAAAAAQKEJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB65b1xaWtra6xbty527doVhw4dioEDB8bQoUNj/Pjx0adPn95oKSIi9u7dG//7f//veP3116OtrS0qKyujvr4+hg8fHmPHjo2amppe6w0AAAAAAAAAAAAAgDNX1PD81q1b46GHHoqVK1dGR0fHO75vbGyMGTNmxJw5c6KysrJofS1btiwWLVoUL730UmSz2XddU1ZWFuPGjYubb745/u2//bdF6w0AAAAAAAAAAAAAgJ4rK9ZFTz/9dNx4443xi1/84l2D8xERb775ZjzyyCMxY8aM2LFjR8F72r9/f8yZMyc+//nPx4svvnjK4HxERGdnZ7z88suxcuXKgvcFAAAAAAAAAAAAAEB+FeXN86tWrYqvfvWr0dnZmTwbMWJEXHbZZVFXVxfNzc2xYsWKOHr0aEREbNy4MebMmROLFy+O2tragvTU0tISM2fOjK1bt+Y8P//88+Oiiy6KhoaGOH78eOzevTt++9vfxubNmwvSBwAAAAAAAAAAAAAAhVfw8Pzu3bvji1/8YhKcz2Qycffdd8fMmTOjrOz/v/h+3759ceedd8aaNWsiImLTpk1xzz33xMMPP5z3ntrb22P27Nk5wflLLrkk7rnnnhgzZsy77nn99dfj6aefjtbW1rz3AwAAAAAAAAAAAABAYZW995KeWbhwYbS1tSX1HXfcEbfeemtOcD4ior6+Ph5//PEYNWpU8uy5556LjRs35r2nb3/72/Haa68l9Sc+8Yn44Q9/eMrgfETEsGHD4vbbb4+//du/zXs/AAAAAAAAAAAAAAAUVkHD83v27IklS5Yk9fDhw2P27NmnXF9VVRXz5s1L6mw2GwsXLsxrT5s2bYrvfve7ST1u3Lh44IEHIpPJ5PUeAAAAAAAAAAAAAADOHgUNzy9btiw6OjqSevr06VFRUXHaPVdccUWMHDkyqVetWhWHDx/OW0+LFi3K6elv/uZvory8PG/nAwAAAAAAAAAAAABw9iloeH758uU59dSpU7u077rrrks+t7e3xwsvvJCXftra2uK5555L6rFjx8aECRPycjYAAAAAAAAAAAAAAGevgobn165dm3xuaGiIYcOGdWnf+PHjc+oXX3wxL/2sWLEi5y32N9xwQ17OBQAAAAAAAAAAAADg7Faw8HxLS0scPHgwqceOHdvlvU1NTTn15s2b89LT//pf/yunvuSSS/JyLgAAAAAAAAAAAAAAZ7fyQh28ZcuWnPrcc8/t8t6GhoaoqKiIjo6OiIjYunVrXnr67W9/m3wuLy9PAv0tLS3x9NNPx/Lly2PHjh1x6NChGDBgQAwdOjSuuOKK+LM/+7MuvzUfAAAAAAAAAAAAAICzT8HC8y0tLTn14MGDu7w3k8nEoEGDYseOHe961pk68Q32jY2N0bdv3/jv//2/x3/5L/8lDh8+nLP2yJEj8X//7/+NNWvWxLe//e341Kc+Ff/xP/7HqKyszEsvAAAAAAAAAAAAAAAUT8HC8yeH0aurq7u1v6amJvn89ttvR3t7e1RVVZ1xP52dnXHw4MGkbmxsjG9+85uxcOHC99zb0dERP/jBD+KVV16J73znO1FbW3vGfUT84T8HAACk3Ykzj/kHACgF5h8AoNSYfwCAUmP+AQBKTRpnnqKF57sbfD95fVtbW4/C8wcPHoxsNpvUW7dujQ0bNkRERHl5ecyYMSOmTZsWo0aNikwmE1u2bImnnnoq/umf/inefvvtiIhYt25d/M3f/E381//6X8+4j4iI/v3792g/AMD7jfkHACg15h8AoNSYfwCAUmP+AQB4fypYeL69vT2nrqio6Nb+ysrK057XXSeH+f/1LfRVVVWxcOHCuPLKK3O+//CHPxwf/vCHY/LkyfG5z30ujh49GhERzz//fCxfvjwmTZrUo34AAAAAAAAAAAAAACiegoXnT35LfEdHR7f2Hzt27LTn9bSff3XXXXe9Izh/oiuuuCK+9KUvxf333588++53v9uj8PyBAwdy3oIPAJBGmUwmeeOG+QcAKAXmHwCg1Jh/AIBSY/4BAErNifNPWhQsPF9dXZ1Td/fN8Sevr6mpyWs/EX/49Uk33XTTe+799Kc/HY8++mjs27cvIiLWrl0bra2tUVdXd0a9ZLNZwzMAUFLMPwBAqTH/AAClxvwDAJQa8w8AwPtTWaEOPjms3tbW1q39J64vLy/v8Zvn+/btG+Xluf9X4KMf/WiXzq2srIyrrroqqbPZbKxfv75H/QAAAAAAAAAAAAAAUDwFC88PGjQop25paeny3mw2m7P+5LPy1dOHPvShLu89//zzc+ru/H0AAAAAAAAAAAAAAOhdBQvPjxo1KqfeuXNnl/fu2bMnOjo6knrkyJEF6al///5d3nvy2gMHDuSlJwAAAAAAAAAAAAAACq9g4fmBAwdGv379kvrVV1/t8t6NGzfm1PkKz48ePTqnPnbsWJf3nry2qqoqLz0BAAAAAAAAAAAAAFB4BQvPR0RMmDAh+bx3795obm7u0r5169bl1BMnTsxLP5deemlO3dLS0uW9u3btyqkHDBiQl54AAAAAAAAAAAAAACi8gobnJ0+enFM///zzXdq3dOnS5HNVVVVceeWVeennyiuvjOrq6qQ+OaR/OuvXr8+pm5qa8tITAAAAAAAAAAAAAACFV9Dw/KRJk6KioiKplyxZEh0dHafds3r16ti6dWtSX3PNNTmB956orKyMKVOmJPWGDRvi97///Xvu27x5c6xduzapBw4cGB/60Ify0hMAAAAAAAAAAAAAAIVX0PB8Q0NDTJ8+Pambm5vjscceO+X69vb2uO+++5I6k8nE3LlzT7l+x44dMWbMmOTPpEmT3rOnz3/+81FeXp7U8+fPP22g/+2334758+dHNptNnt18883veQ8AAAAAAAAAAAAAAGePgobnIyLmzJkTNTU1Sb1gwYJYtGhRdHZ25qzbt29fzJo1KzZt2pQ8u/7666OpqSmv/Xzwgx+MGTNmJPXatWtj7ty5sXv37nesffPNN+O2226LNWvWJM+GDBkS//7f//u89gQAAAAAAAAAAAAAQGFlsie+Ur1AVq5cGXPnzs0JzI8YMSIuv/zyqKuri+3bt8eKFSvi6NGjyfejR4+OxYsXR21t7SnP3bFjR0yePDmphwwZEsuXL3/Pfo4dOxa33HJLrF27NnnWt2/fuPLKK2PUqFEREbFly5Z44YUX4siRI8maD3zgA/GP//iPMW7cuK79xU+htbU1ivBjBwDoVZlMJurq6iLC/AMAlAbzDwBQasw/AECpMf8AAKXmxPknLYoSno+IeOqpp2L+/Pk5YfRTGTt2bDzyyCMxdOjQ06470/B8xB8G2C996UvxwgsvdGl9Y2NjLFy4MC688MIurX+vuw3PAEDa+cdDAKDUmH8AgFJj/gEASo35BwAoNWkMz5cV66Jp06bFk08+GVOmTImKiop3XdPY2Bi33XZbPPHEE+8ZnO+purq6+O53vxv33ntvjB49+rTr5syZE88++2xegvMAAAAAAAAAAAAAABRf0d48f6L9+/fHunXrYteuXdHW1hYNDQ0xbNiwuPjii6NPnz7FbiciIl577bXYvHlztLS0xPHjx2PAgAHxoQ99KC688MIoK8vv/zHwP08BgFLgzRsAQKkx/wAApcb8AwCUGvMPAFBq0vjm+fLeuHTAgAExefLk3rj6lC644IK44IILersNAAAAAAAAAAAAAAAKIL+vVAcAAAAAAAAAAAAAgLOQ8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqlffGpa2trbFu3brYtWtXHDp0KAYOHBhDhw6N8ePHR58+fXqjJQAAAAAAAAAAAAAAUqyo4fmtW7fGQw89FCtXroyOjo53fN/Y2BgzZsyIOXPmRGVlZTFby7Fo0aJ48MEHc55deuml8YMf/KCXOgIAAAAAAAAAAAAAoCfKinXR008/HTfeeGP84he/eNfgfETEm2++GY888kjMmDEjduzYUazWbVxH0gABAABJREFUcuzYsSP+/u//vlfuBgAAAAAAAAAAAACgMIry5vlVq1bFV7/61ejs7EyejRgxIi677LKoq6uL5ubmWLFiRRw9ejQiIjZu3Bhz5syJxYsXR21tbTFaTHzta1+Lw4cPF/VOAAAAAAAAAAAAAAAKq+Dh+d27d8cXv/jFJDifyWTi7rvvjpkzZ0ZZ2f9/8f2+ffvizjvvjDVr1kRExKZNm+Kee+6Jhx9+uNAtJp566qn41a9+FRERjY2N8eabbxbtbgAAAAAAAAAAAAAACqfsvZf0zMKFC6OtrS2p77jjjrj11ltzgvMREfX19fH444/HqFGjkmfPPfdcbNy4sdAtRsQfwvsPPvhgRPwh4P/Xf/3XRbkXAAAAAAAAAAAAAIDCK2h4fs+ePbFkyZKkHj58eMyePfuU66uqqmLevHlJnc1mY+HChYVsMXH//ffH/v37IyJixowZ8W/+zb8pyr0AAAAAAAAAAAAAABReQcPzy5Yti46OjqSePn16VFRUnHbPFVdcESNHjkzqVatWxeHDhwvWY0TEv/zLv8QzzzwTERGNjY3x5S9/uaD3AQAAAAAAAAAAAABQXAUNzy9fvjynnjp1apf2XXfddcnn9vb2eOGFF/La14kOHz4cX/va15L6r//6r+OP/uiPCnYfAAAAAAAAAAAAAADFV9Dw/Nq1a5PPDQ0NMWzYsC7tGz9+fE794osv5rWvE33zm9+MnTt3RkTEVVddFTfccEPB7gIAAAAAAAAAAAAAoHcULDzf0tISBw8eTOqxY8d2eW9TU1NOvXnz5rz1daINGzbED3/4w4iIqKqqynkDPQAAAAAAAAAAAAAA6VGw8PyWLVty6nPPPbfLexsaGqKioiKpt27dmre+/tXbb78d8+bNi+PHj0dExNy5c2P48OF5vwcAAAAAAAAAAAAAgN5X0DfPn2jw4MFd3pvJZGLQoEGnPCsfHn/88XjttdciImLUqFHxmc98Ju93AAAAAAAAAAAAAABwdigv1MGHDx/Oqaurq7u1v6amJvn89ttvR3t7e1RVVeWlt23btsW3v/3tiPhDUP/ee++NysrKvJzdFZlMpmh3AQD0lhNnHvMPAFAKzD8AQKkx/wAApcb8AwCUmjTOPEULz3c3+H7y+ra2tryE57PZbMybNy/a29sjIuLGG2+MiRMn9vjc7ujfv39R7wMA6G3mHwCg1Jh/AIBSY/4BAEqN+QcA4P2prFAH/2s4/V9VVFR0a//Jb4I/+bwz9eMf/zjWrFkTEREDBgyI//Af/kNezgUAAAAAAAAAAAAA4OxVsDfPn/yW+I6Ojm7tP3bs2GnPOxNvvvlmfOMb30jqu+++OwYMGNDjc7vrwIEDkc1mi34vAEAxZTKZ5I0b5h8AoBSYfwCAUmP+AQBKjfkHACg1J84/aVGw8Hx1dXVO3d03x5+8vqampsc9/d3f/V289dZbERFx6aWXxp//+Z/3+Mwzkc1mDc8AQEkx/wAApcb8AwCUGvMPAFBqzD8AAO9PZYU6+OTwfFtbW7f2n7i+vLy8x2+eX7ZsWSxdujQiIioqKuLee+/t0XkAAAAAAAAAAAAAALx/FCw8P2jQoJy6paWly3uz2WzO+pPPOhMPPvhg8nn27NkxcuTIHp8JAAAAAAAAAAAAAMD7Q3mhDh41alROvXPnzi7v3bNnT3R0dCR1PoLu+/fvTz4/+uij8eijj3Zr/5o1a6KpqSmpJ06cGN///vd73BcAAAAAAAAAAAAAAIVXsPD8wIEDo1+/fnHw4MGIiHj11Ve7vHfjxo05db7fEn/8+PEe7+vs7MxXOwAAAAAAAAAAAAAAFFhZIQ+fMGFC8nnv3r3R3NzcpX3r1q3LqSdOnJjXvgAAAAAAAAAAAAAAKC0Fe/N8RMTkyZNj5cqVSf3888/H7Nmz33Pf0qVLk89VVVVx5ZVX9riXl156qVvrd+zYEZMnT07qSy+9NH7wgx/0uA8AAAAAAAAAAAAAAIqvoG+enzRpUlRUVCT1kiVLoqOj47R7Vq9eHVu3bk3qa665JqqrqwvWIwAAAAAAAAAAAAAA6VfQ8HxDQ0NMnz49qZubm+Oxxx475fr29va47777kjqTycTcuXNPuX7Hjh0xZsyY5M+kSZPy0zgAAAAAAAAAAAAAAKlS0PB8RMScOXOipqYmqRcsWBCLFi2Kzs7OnHX79u2LWbNmxaZNm5Jn119/fTQ1NRW6RQAAAAAAAAAAAAAAUq680BcMGjQoHn744Zg7d250dnZGNpuNBx98MH70ox/F5ZdfHnV1dbF9+/ZYsWJFHD16NNk3evTo+E//6T8Vuj0AAAAAAAAAAAAAAEpAwcPzERHXXnttPPDAAzF//vw4cuRIRERs27Yttm3b9q7rx44dG4888kjU1tYWoz0AAAAAAAAAAAAAAFKurFgXTZs2LZ588smYMmVKVFRUvOuaxsbGuO222+KJJ56IoUOHFqs1AAAAAAAAAAAAAABSLpPNZrPFvnT//v2xbt262LVrV7S1tUVDQ0MMGzYsLr744ujTp0+x2ym61tbW6IUfOwBAUWUymairq4sI8w8AUBrMPwBAqTH/AAClxvwDAJSaE+eftCjvjUsHDBgQkydP7o2rAQAAAAAAAAAAAAAoQWW93QAAAAAAAAAAAAAAABSa8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpV94bl7a2tsa6deti165dcejQoRg4cGAMHTo0xo8fH3369ClaH4cOHYr/83/+T2zZsiVaW1ujo6Mj/uiP/igGDx4cH/nIR6K+vr5ovQAAAAAAAAAAAAAAUDhFDc9v3bo1HnrooVi5cmV0dHS84/vGxsaYMWNGzJkzJyorKwvSw8svvxz//M//HL/+9a9j48aN0dnZecq1F110UcycOTNuuOGGyGQyBekHAAAAAAAAAAAAAIDCy2Sz2WwxLnr66adj/vz5cfjw4fdc29TUFAsWLIihQ4fmtYdbb701fv3rX3d73xVXXBHf+MY3YuDAgXnpo7W1NYr0YwcA6DWZTCbq6uoiwvwDAJQG8w8AUGrMPwBAqTH/AACl5sT5Jy2K8ub5VatWxVe/+tWct7yPGDEiLrvssqirq4vm5uZYsWJFHD16NCIiNm7cGHPmzInFixdHbW1t3vrYt2/fO56de+658ZGPfCQGDhwY1dXVsWfPnlizZk1s27YtWbN69eq45ZZb4h//8R9jwIABeesHAAAAAAAAAAAAAIDiKHh4fvfu3fHFL34xCc5nMpm4++67Y+bMmVFWVpas27dvX9x5552xZs2aiIjYtGlT3HPPPfHwww/nvaeGhob48z//8/jkJz8ZH/zgB9/xfTabjaVLl8Y999wTBw4ciIiIzZs3x9e+9rX4+7//+7z3AwAAAAAAAAAAAABAYZW995KeWbhwYbS1tSX1HXfcEbfeemtOcD4ior6+Ph5//PEYNWpU8uy5556LjRs35q2X+vr6+OpXvxorVqyIr3zlK+8anI/4Q8B/6tSpsWjRovjABz6QPF+6dGls2LAhb/0AAAAAAAAAAAAAAFAcBQ3P79mzJ5YsWZLUw4cPj9mzZ59yfVVVVcybNy+ps9lsLFy4MG/9fOc734lbb701Kisru7R+3LhxMXPmzJxnS5cuzVs/AAAAAAAAAAAAAAAUR0HD88uWLYuOjo6knj59elRUVJx2zxVXXBEjR45M6lWrVsXhw4fz0k95eXm399xwww05tTfPAwAAAAAAAAAAAAC8/xQ0PL98+fKceurUqV3ad9111yWf29vb44UXXshrX91x3nnn5dR79+7tpU4AAAAAAAAAAAAAADhTBQ3Pr127Nvnc0NAQw4YN69K+8ePH59QvvvhiXvvqjra2tpz6TN5eDwAAAAAAAAAAAABA7ypYeL6lpSUOHjyY1GPHju3y3qamppx68+bNeeuru373u9/l1IMHD+6lTgAAAAAAAAAAAAAAOFMFC89v2bIlpz733HO7vLehoSEqKiqSeuvWrXnrq7t+9rOf5dSXX355L3UCAAAAAAAAAAAAAMCZKuib50/UnTe2ZzKZGDRo0CnPKpZt27bFM888k9R9+vSJP/3TP+2VXgAAAAAAAAAAAAAAOHPlhTr48OHDOXV1dXW39tfU1CSf33777Whvb4+qqqq89NYVnZ2d8bd/+7fR0dGRPJs2bVoMGzasx2dnMpkenwEAcLY7ceYx/wAApcD8AwCUGvMPAFBqzD8AQKlJ48xTtPB8d4PvJ69va2sranj+W9/6Vrz44otJXV9fH1/5ylfycnb//v3zcg4AwPuF+QcAKDXmHwCg1Jh/AIBSY/4BAHh/KivUwe3t7Tl1RUVFt/ZXVlae9rxC+uUvfxnf+ta3kjqTycR//s//Oerr64vWAwAAAAAAAAAAAAAA+VOwN8+f/Jb4jo6Obu0/duzYac8rlLVr18aXv/zlyGazybPbb789Jk2alLc7Dhw4kHM+AEAaZTKZ5I0b5h8AoBSYfwCAUmP+AQBKjfkHACg1J84/aVGw8Hx1dXVO3d03x5+8vqampsc9vZff/e538bnPfS6OHj2aPPv0pz8dt99+e17vyWazhmcAoKSYfwCAUmP+AQBKjfkHACg15h8AgPenskIdfHJ4vq2trVv7T1xfXl5e8DfPNzc3x2c+85l46623kmfXX3993HPPPQW9FwAAAAAAAAAAAACAwitYeH7QoEE5dUtLS5f3ZrPZnPUnn5VvLS0tccstt8Sbb76ZPLv66qvjG9/4RpSVFexHBAAAAAAAAAAAAABAkRQsGT5q1KiceufOnV3eu2fPnujo6EjqkSNH5q2vk+3bty9uvfXWnP4uueSSeOSRR6KioqJg9wIAAAAAAAAAAAAAUDwFC88PHDgw+vXrl9Svvvpql/du3Lgxpy5UeP7QoUMxa9as2Lx5c/Js3Lhx8d/+23+Lvn37FuROAAAAAAAAAAAAAACKr2Dh+YiICRMmJJ/37t0bzc3NXdq3bt26nHrixIl57Ssi4ujRozFnzpx45ZVXkmejR4+Oxx9/PGpra/N+HwAAAAAAAAAAAAAAvaeg4fnJkyfn1M8//3yX9i1dujT5XFVVFVdeeWVe++ro6IgvfOEL8dJLLyXPhg8fHt/73veivr4+r3cBAAAAAAAAAAAAAND7ChqenzRpUlRUVCT1kiVLoqOj47R7Vq9eHVu3bk3qa665Jqqrq/PWU2dnZ9x9992xatWq5NngwYNj0aJFMWjQoLzdAwAAAAAAAAAAAADA2aOg4fmGhoaYPn16Ujc3N8djjz12yvXt7e1x3333JXUmk4m5c+eecv2OHTtizJgxyZ9Jkya9Z0/z58+PZ599NqnPOeecWLRoUQwdOvQ99wIAAAAAAAAAAAAA8P5U0PB8RMScOXOipqYmqRcsWBCLFi2Kzs7OnHX79u2LWbNmxaZNm5Jn119/fTQ1NeWtl4cffjgWL16c1P3794/vfe97MXLkyLzdAQAAAAAAAAAAAADA2SeTzWazhb5k5cqVMXfu3JzA/IgRI+Lyyy+Purq62L59e6xYsSKOHj2afD969OhYvHhx1NbWnvLcHTt2xOTJk5N6yJAhsXz58lOuHzNmTE6dyWSirKz7/39g48aN3d5zotbW1ijCjx0AoFdlMpmoq6uLCPMPAFAazD8AQKkx/wAApcb8AwCUmhPnn7QoL8Yl1157bTzwwAMxf/78OHLkSEREbNu2LbZt2/au68eOHRuPPPLIaYPz+ZDNZuP48eMFvQMAAAAAAAAAAAAAgN7X/deun6Fp06bFk08+GVOmTImKiop3XdPY2Bi33XZbPPHEEzF06NBitQYAAAAAAAAAAAAAQMplsr3w+4P2798f69ati127dkVbW1s0NDTEsGHD4uKLL44+ffoUu52i82ubAIBS4NdWAgClxvwDAJQa8w8AUGrMPwBAqTlx/kmL8t64dMCAATF58uTeuBoAAAAAAAAAAAAAgBJU1tsNAAAAAAAAAAAAAABAoQnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrlvXFpa2trrFu3Lnbt2hWHDh2KgQMHxtChQ2P8+PHRp0+fovfT1tYWL730UrS0tERra2vU19fHkCFDYsKECVFZWVn0fgAAAAAAAAAAAAAAyK+ihue3bt0aDz30UKxcuTI6Ojre8X1jY2PMmDEj5syZU5TQ+u7du+Phhx+OpUuXxuHDh9/xff/+/eMTn/hE3HXXXVFbW1vwfgAAAAAAAAAAAAAAKIyyYl309NNPx4033hi/+MUv3jU4HxHx5ptvxiOPPBIzZsyIHTt2FLSfX/3qV/GJT3wifvrTn75rcD4i4sCBA/GDH/wgpk2bFq+++mpB+wEAAAAAAAAAAAAAoHAy2Ww2W+hLVq1aFZ/73Oeis7MzeTZixIi47LLLoq6uLpqbm2PFihVx9OjR5PvRo0fH4sWLC/LG91deeSVuuummOHLkSPJs4MCB8Sd/8ifR0NAQb7zxRqxYsSLeeuut5PvGxsb48Y9/HIMHD+7x/a2trVGEHzsAQK/KZDJRV1cXEeYfAKA0mH8AgFJj/gEASo35BwAoNSfOP2lR8PD87t27Y+rUqdHW1vaHCzOZuPvuu2PmzJlRVvb/X3y/b9++uPPOO2PNmjXJsxtuuCEefvjhvPZz9OjRmDp1arzxxhvJs7/6q7+KL37xi1FZWZk8O3ToUMybNy+ee+655Nn48ePjRz/6UY97MDwDAKXAPx4CAKXG/AMAlBrzDwBQasw/AECpSWN4vuy9l/TMwoULk+B8RMQdd9wRt956a05wPiKivr4+Hn/88Rg1alTy7LnnnouNGzfmtZ8f/vCHOcH5T37yk3H33XfnBOcjImpra+Ohhx6KK664Inm2fv36+OUvf5nXfgAAAAAAAAAAAAAAKLyChuf37NkTS5YsSerhw4fH7NmzT7m+qqoq5s2bl9TZbDYWLlyYt346Ojri8ccfT+p+/frF3Xfffcr1ZWVlce+99+YE/b/97W/nrR8AAAAAAAAAAAAAAIqjoOH5ZcuWRUdHR1JPnz49KioqTrvniiuuiJEjRyb1qlWr4vDhw3np5ze/+U3s378/qT/+8Y9H//79T7vnvPPOi49+9KNJ/corr8Trr7+el34AAAAAAAAAAAAAACiOgobnly9fnlNPnTq1S/uuu+665HN7e3u88MILBennxHtO5+S+ly1blpd+AAAAAAAAAAAAAAAojoKG59euXZt8bmhoiGHDhnVp3/jx43PqF198MS/9vPTSS8nnPn36xEUXXdSlfRdffHFB+gEAAAAAAAAAAAAAoDgKFp5vaWmJgwcPJvXYsWO7vLepqSmn3rx5c4/76ezsjG3btiX1eeedFzU1NV3aO3LkyOjbt29e+wEAAAAAAAAAAAAAoHgKFp7fsmVLTn3uued2eW9DQ0NUVFQk9datW3vcz86dO6O9vf2M+slkMjF48OCkfv3116Ojo6PHPQEAAAAAAAAAAAAAUBwFffP8iU4Mn7+XTCYTgwYNOuVZxe4nInL6efvtt2Pv3r097gkAAAAAAAAAAAAAgOIoWHj+8OHDOXV1dXW39tfU1CSf33777Zy3xp+Jtra2vPXzbucBAAAAAAAAAAAAAHD2Ki/UwSeH56uqqrq1/+T1bW1t3T6jkP2cfF53ZDKZM94LAPB+ceLMY/4BAEqB+QcAKDXmHwCg1Jh/AIBSk8aZp2Dh+ZPfFF9RUdGt/ZWVlac97/3cT//+/c94LwDA+5H5BwAoNeYfAKDUmH8AgFJj/gEAeH8qK9TBJ7+pvaOjo1v7jx07dtrz3u/9AAAAAAAAAAAAAABQPAULz1dXV+fU3X1T+8nra2pqzqp+Tj4PAAAAAAAAAAAAAICzV9HC821tbd3af+L68vLyHr/p/eTwfU/6ebfzAAAAAAAAAAAAAAA4exUsPD9o0KCcuqWlpct7s9lszvqTzyp2PxERu3btSj6Xl5fHOeec0+OeAAAAAAAAAAAAAAAojoKF50eNGpVT79y5s8t79+zZEx0dHUk9cuTIHvczZMiQ6Nu37xn1k81mc8Lzw4cPj4qKih73BAAAAAAAAAAAAABAcRQsPD9w4MDo169fUr/66qtd3rtx48acOh/h+bKyshgxYkRSNzc3R1tbW5f2bt68Odrb2/PaDwAAAAAAAAAAAAAAxVOw8HxExIQJE5LPe/fujebm5i7tW7duXU49ceLEvPdz/Pjx2LBhQ5f2rV+/viD9AAAAAAAAAAAAAABQHAUNz0+ePDmnfv7557u0b+nSpcnnqqqquPLKK3u1n5PXnXwOAAAAAAAAAAAAAABnt4KG5ydNmhQVFRVJvWTJkujo6DjtntWrV8fWrVuT+pprronq6uq89HPppZdGfX19Uj/77LPx1ltvnXbP9u3b49e//nVSjxs3LoYNG5aXfgAAAAAAAAAAAAAAKI6ChucbGhpi+vTpSd3c3ByPPfbYKde3t7fHfffdl9SZTCbmzp17yvU7duyIMWPGJH8mTZp02n4qKipi1qxZSX3w4MF48MEHT7m+s7Mzvva1r0VnZ2fy7POf//xp7wAAAAAAAAAAAAAA4OxT0PB8RMScOXOipqYmqRcsWBCLFi3KCaRHROzbty9mzZoVmzZtSp5df/310dTUlNd+brrppvjjP/7jpP7JT34SX//61+PYsWM56w4dOhRf/vKXY/Xq1cmz8ePHx5QpU/LaDwAAAAAAAAAAAAAAhZfJZrPZQl+ycuXKmDt3bk5gfsSIEXH55ZdHXV1dbN++PVasWBFHjx5Nvh89enQsXrw4amtrT3nujh07YvLkyUk9ZMiQWL58+Xv288orr8RNN90UR44cSZ4NHDgwrrnmmjjnnHNi165dsXz58njrrbeS7xsbG+PHP/5xDB48uMt/bwAAAAAAAAAAAAAAzg5FCc9HRDz11FMxf/78nMD6qYwdOzYeeeSRGDp06GnXnWl4PiLiX/7lX+IrX/lKtLa2vufaoUOHxoIFC/L+FnwAAAAAAAAAAAAAAIqjrFgXTZs2LZ588smYMmVKVFRUvOuaxsbGuO222+KJJ554z+B8T1199dXxzDPPxLRp0+IDH/jAu67p379/3HzzzfH0008LzgMAAAAAAAAAAAAAvI8V7c3zJ9q/f3+sW7cudu3aFW1tbdHQ0BDDhg2Liy++OPr06VPsdqKtrS1eeumleOONN+LAgQNRX18fQ4YMiUsuuSQqKyuL3g8AAAAAAAAAAAAAAPnVK+F5AAAAAAAAAAAAAAAoprLebgAAAAAAAAAAAAAAAApNeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1ynu7gbNBW1tbvPTSS9HS0hKtra1RX18fQ4YMiQkTJkRlZWVvtwcAAAAAAAAAAAAAQA8VLTzf1tYWGzdujA0bNsSGDRvi5Zdfjp07dybfDxkyJJYvX16sdiIiYvfu3fHwww/H0qVL4/Dhw+/4vn///vGJT3wi7rrrrqitrS1qbwAAAAAAAAAAAAAA5E8mm81mC3nBokWL4sknn4xNmzZFZ2fnKdcVOzz/q1/9Kr7yla/E/v3733PtsGHDYsGCBTF27NgidAYAAAAAAAAAAAAAQL4V/M3zL774Yvz+978v9DXd8sorr8Ttt98eR44cSZ4NHDgw/uRP/iQaGhrijTfeiBUrVsRbb70VERGvv/56fPazn40f//jHMXjw4N5qGwAAAAAAAAAAAACAM1Tw8Py7qa6ujnHjxsUrr7wShw8fLurdR48ejdtuuy0nOP9Xf/VX8cUvfjEqKyuTZ4cOHYp58+bFc889FxERb775Ztx1113xox/9qKj9AgAAAAAAAAAAAADQcwUPz1dVVcVFF10UF154YXz4wx+OCy+8MEaNGhVlZWUxadKkoofnf/jDH8Ybb7yR1J/85Cfj7rvvfse62traeOihh2L//v2xevXqiIhYv359/PKXv4wpU6YUrV8AAAAAAAAAAAAAAHouk81ms711+aRJk2Lnzp0RETFkyJBYvnx5Qe/r6OiIq6++Ovbv3x8REf369Ytly5ZF//79T7ln+/btMXXq1Ojs7IyIiHHjxsWTTz5Z0D4BAAAAAAAAAAAAAMivst5uoJh+85vfJMH5iIiPf/zjpw3OR0Scd9558dGPfjSpX3nllXj99dcL1iMAAAAAAAAAAAAAAPlXUuH5k99sf91113Vp39SpU3PqZcuW5a0nAAAAAAAAAAAAAAAKr6TC8y+99FLyuU+fPnHRRRd1ad/FF1+cU7/44ot57QsAAAAAAAAAAAAAgMIqmfB8Z2dnbNu2LanPO++8qKmp6dLekSNHRt++fZN68+bN+W4PAAAAAAAAAAAAAIACKpnw/M6dO6O9vT2pzz333C7vzWQyMXjw4KR+/fXXo6OjI6/9AQAAAAAAAAAAAABQOCUTnm9pacmpTwzDd8WgQYOSz2+//Xbs3bs3L30BAAAAAAAAAAAAAFB4JROeb2try6mrq6u7tb+mpua05wEAAAAAAAAAAAAAcPYqmfD84cOHc+qqqqpu7T95/cnnAQAAAAAAAAAAAABw9iqZ8Hx7e3tOXVFR0a39lZWVpz0PAAAAAAAAAAAAAICzV3lvN1AsJ785vqOjo1v7jx07dtrzuuPAgQORzWbPeD8AwPtBJpOJ/v37R4T5BwAoDeYfAKDUmH8AgFJj/gEASs2J809alEx4vrq6Oqfu7pvjT15/8nndkc1mDc8AQEkx/wAApcb8AwCUGvMPAFBqzD8AAO9PZb3dQLHU1NTk1G1tbd3af/L6k88DAAAAAAAAAAAAAODsVTLh+UGDBuXULS0t3dq/a9eu5HN5eXmcc845eekLAAAAAAAAAAAAAIDCK5nw/JAhQ6Jv375JvXPnzi7vzWazOeH54cOHR0VFRV77AwAAAAAAAAAAAACgcEomPF9WVhYjRoxI6ubm5mhra+vS3s2bN0d7e3tSjxw5Mt/tAQAAAAAAAAAAAABQQCUTno+ImDBhQvL5+PHjsWHDhi7tW79+fU49ceLEvPYFAAAAAAAAAAAAAEBhlVR4fvLkyTn1888/36V9J687+RwAAAAAAAAAAAAAAM5uJRWev/TSS6O+vj6pn3322XjrrbdOu2f79u3x61//OqnHjRsXw4YNK1iPAAAAAAAAAAAAAADk3/s6PL9jx44YM2ZM8mfSpEmnXV9RURGzZs1K6oMHD8aDDz54yvWdnZ3xta99LTo7O5Nnn//853veOAAAAAAAAAAAAAAARfW+Ds+fiZtuuin++I//OKl/8pOfxNe//vU4duxYzrpDhw7Fl7/85Vi9enXybPz48TFlypSi9QoAAAAAAAAAAAAAQH6UF/qCnTt3xp/+6Z++63fHjx/PWdfU1PSu6/7hH/4hLr300rz007dv3/jWt74VN910Uxw5ciQiIr73ve/Fz3/+87jmmmvinHPOiV27dsXy5cvjrbfeSvY1NjbGN7/5zbz0AAAAAAAAAAAAAABAcRU8PJ/NZnNC8qdzqnXZbDafLcW4ceNiwYIF8ZWvfCVaW1sjImL37t2xZMmSd10/dOjQWLBgQQwePDivfQAAAAAAAAAAAAAAUBxlvd1Ab7n66qvjmWeeiWnTpsUHPvCBd13Tv3//uPnmm+Ppp58+5VvxAQAAAAAAAAAAAAA4+2Wy+X6t+/tQW1tbvPTSS/HGG2/EgQMHor6+PoYMGRKXXHJJVFZW5v2+1tbWvL9NHwDgbJPJZKKuri4izD8AQGkw/wAApcb8AwCUGvMPAFBqTpx/0qK8txs4G9TU1MQ111zT220AAAAAAAAAAAAAAFAgZb3dAAAAAAAAAAAAAAAAFJrwPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOqV98alra2tsW7duti1a1ccOnQoBg4cGEOHDo3x48dHnz59itpLZ2dnbNq0KV599dXYv39/HDlyJGpqauKcc86JpqamGDFiRGQymaL2BAAAAAAAAAAAAABAfhU1PL9169Z46KGHYuXKldHR0fGO7xsbG2PGjBkxZ86cqKysLGgvBw8ejMcffzx+8pOfxJtvvnnKdUOGDIlPfepTMXPmzKiqqipoTwAAAAAAAAAAAAAAFEYmm81mi3HR008/HfPnz4/Dhw+/59qmpqZYsGBBDB06tCC9rF+/Pu68885oaWnp8p4PfvCD8a1vfStGjRrV4/tbW1ujSD92AIBek8lkoq6uLiLMPwBAaTD/AAClxvwDAJQa8w8AUGpOnH/Soijh+VWrVsXnPve56OzsTJ6NGDEiLrvssqirq4vm5uZYsWJFHD16NPl+9OjRsXjx4qitrc1rL6+99lrcdNNNcejQoeRZJpOJCRMmxLhx46Jfv35x4MCB+O1vfxvr16/P2dvY2BhPPPFEnHvuuT3qwfAMAJQC/3gIAJQa8w8AUGrMPwBAqTH/AAClRnj+DOzevTumTp0abW1tf7gwk4m77747Zs6cGWVlZcm6ffv2xZ133hlr1qxJnt1www3x8MMP562XbDYb06dPjw0bNiTPzj///HjooYfi/PPPf8f6jRs3xpe+9KXYunVr8mzKlCnxrW99q0d9GJ4BgFLgHw8BgFJj/gEASo35BwAoNeYfAKDUpDE8X/beS3pm4cKFSXA+IuKOO+6IW2+9NSc4HxFRX18fjz/+eIwaNSp59txzz8XGjRvz1suGDRtygvP9+/eP733ve+8anI+IaGpqiu9///vRr1+/5NmyZcuipaUlbz0BAAAAAAAAAAAAAFB4BQ3P79mzJ5YsWZLUw4cPj9mzZ59yfVVVVcybNy+ps9lsLFy4MG/9rF69OqeePn16NDY2nnbPoEGD4t/9u3+X09NvfvObvPUEAAAAAAAAAAAAAEDhFTQ8v2zZsujo6Ejq6dOnR0VFxWn3XHHFFTFy5MikXrVqVRw+fDgv/Zz8xviPfOQjXdp38cUX59S7d+/OSz8AAAAAAAAAAAAAABRHQcPzy5cvz6mnTp3apX3XXXdd8rm9vT1eeOGFvPTT2dmZU/ft27dL+z7wgQ/k1JlMJi/9AAAAAAAAAAAAAABQHAUNz69duzb53NDQEMOGDevSvvHjx+fUL774Yl76GTp0aE79xhtvdGnfzp07c+rzzjsvL/0AAAAAAAAAAAAAAFAcBQvPt7S0xMGDB5N67NixXd7b1NSUU2/evDkvPV199dU59f/4H/+jS/uee+655HN1dXVcdtlleekHAAAAAAAAAAAAAIDiKFh4fsuWLTn1ueee2+W9DQ0NUVFRkdRbt27NS08XXHBBXHvttUn9wgsvxD/90z+dds/3v//9+J//838m9a233hr9+vXLSz8AAAAAAAAAAAAAABRHQd88f6LBgwd3eW8mk4lBgwad8qye+Lu/+7sYNmxYUs+fPz++9KUvxW9+85s4dOhQZLPZOHjwYKxevTruuOOOuP/++5O1H/vYx2Lu3Ll56wUAAAAAAAAAAAAAgOIoL9TBhw8fzqmrq6u7tb+mpib5/Pbbb0d7e3tUVVX1uK+BAwfG4sWLY/78+fHP//zPERHx7LPPxrPPPnvKPbW1tTFr1qyYPXt29OnTp8c9ZDKZHp8BAHC2O3HmMf8AAKXA/AMAlBrzDwBQasw/AECpSePMU7TwfHeD7yevb2try0t4PiLinHPOiQULFsSqVavinnvuiV27dp1y7fDhw+Oee+6Jq6++Oi93R0T0798/b2cBALwfmH8AgFJj/gEASo35BwAoNeYfAID3p7JCHdze3p5TV1RUdGt/ZWXlac/riZaWlrjrrrtizpw5pw3OR0Q0NzfHrFmz4lOf+lRs2rQpbz0AAAAAAAAAAAAAAFA8BXvz/Mlvie/o6OjW/mPHjp32vDP12muvxS233BL79++PiD/8OoGPf/zjceONN8YFF1wQ/fr1i4MHD8bGjRvjpz/9aTz77LORzWZj/fr18Rd/8Rfxne98JyZOnNijHg4cOBDZbDYffx0AgLNWJpNJ3rhh/gEASoH5BwAoNeYfAKDUmH8AgFJz4vyTFgULz1dXV+fU3X1z/Mnra2pqetzTgQMH4rOf/WwSnK+oqIgFCxbExz72sZx19fX1cdVVV8VVV10VN9xwQ3zhC1+Ijo6OOHLkSNx+++3x85//PBobG8+4j2w2a3gGAEqK+QcAKDXmHwCg1Jh/AIBSY/4BAHh/KivUwSeH59va2rq1/8T15eXleXnz/KOPPhq7d+9O6rvuuusdwfmTTZo0Ke68886kbm1tjYULF/a4FwAAAAAAAAAAAAAAiqdg4flBgwbl1C0tLV3em81mc9affNaZyGaz8dRTTyV1dXV1/OVf/mWX9t588805/xngmWeeic7Ozh73BAAAAAAAAAAAAABAcRQsPD9q1KiceufOnV3eu2fPnujo6EjqkSNH9rif5ubm2LdvX1JfdNFF0bdv3y7t7du3b1x44YVJ/dZbb8X27dt73BMAAAAAAAAAAAAAAMVRsPD8wIEDo1+/fkn96quvdnnvxo0bc+p8hOf37t2bUzc0NHRrf2NjY069f//+HvcEAAAAAAAAAAAAAEBxFCw8HxExYcKE5PPevXujubm5S/vWrVuXU0+cOLHHvVRVVeXU7e3t3dp/5MiRnLq6urrHPQEAAAAAAAAAAAAAUBwFDc9Pnjw5p37++ee7tG/p0qXJ56qqqrjyyit73Ms555yTU2/evLlb+09eX19f3+OeAAAAAAAAAAAAAAAojoKG5ydNmhQVFRVJvWTJkujo6DjtntWrV8fWrVuT+pprrsnLW94HDx4cAwcOTOotW7bEa6+91qW9L7/8cmzbti2phwwZknMWAAAAAAAAAAAAAABnt4KG5xsaGmL69OlJ3dzcHI899tgp17e3t8d9992X1JlMJubOnXvK9Tt27IgxY8YkfyZNmnTafj72sY/l1PPnz49jx46ddk97e3vce++9Oc/e6x4AAAAAAAAAAAAAAM4uBQ3PR0TMmTMnampqknrBggWxaNGi6OzszFm3b9++mDVrVmzatCl5dv3110dTU1Peepk9e3bOm/DXr18fn/nMZ6K5ufld12/ZsiVmzpwZL7/8cvKsqqoqZs2albeeAAAAAAAAAAAAAAAovEw2m80W+pKVK1fG3LlzcwLzI0aMiMsvvzzq6upi+/btsWLFijh69Gjy/ejRo2Px4sVRW1t7ynN37NgRkydPTuohQ4bE8uXLT9vL4sWL45577sl51qdPn5gwYUI0NTVFbW1tHDx4MF555ZVYt27dO0L+X//612PatGld+WufUmtraxThxw4A0KsymUzU1dVFhPkHACgN5h8AoNSYfwCAUmP+AQBKzYnzT1qUF+OSa6+9Nh544IGYP39+HDlyJCIitm3bFtu2bXvX9WPHjo1HHnnktMH5MzVjxoyIiLj//vuTsP7x48djzZo1sWbNmlPuq66ujnnz5vU4OA8AAAAAAAAAAAAAQPGVFeuiadOmxZNPPhlTpkyJioqKd13T2NgYt912WzzxxBMxdOjQgvUyY8aM+NnPfhaf/vSno6am5rRra2tr46abboqf/exnceONNxasJwAAAAAAAAAAAAAACieT7YXfH7R///5Yt25d7Nq1K9ra2qKhoSGGDRsWF198cfTp06eovRw/fjx+97vfxe9///tobW2Nw4cPR3V1ddTV1cWYMWPi/PPPz3tPfm0TAFAK/NpKAKDUmH8AgFJj/gEASo35BwAoNSfOP2lR3huXDhgwICZPntwbV79Dnz59oqmpKZqamnq7FQAAAAAAAAAAAAAACqSstxsAAAAAAAAAAAAAAIBCE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAA/h979x5kdXnmCfw5TV+wG4am7QZGLhIgEiC6QbzGOCbAlJRmHcbswmRdizBhIHgZNXEXpxIQd9xosiuVHVCyhoRNxdkJkjgSR1Ym4VYTwwYVdzSiyYJgCyuNXBqhgaalz/6R2t9yELCbPuc0/s7nU0XVeX7nfX/vQ//1FPXtFwAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASL3y7ji0ubk5Nm3aFLt27YpDhw5Fv379YtCgQTF27Njo0aNHd7QUERF79+6Nf/7nf4633347WlpaorKyMurq6mLIkCExatSoqKmp6bbeAAAAAAAAAAAAAAA4e0UNz2/bti0eeeSRWLduXbS1tX3g+4aGhpg6dWrMmjUrKisri9bX6tWrY+nSpfHiiy9GNps95ZqysrIYM2ZM3HrrrfEnf/InResNAAAAAAAAAAAAAICuKyvWQStWrIibb745fv7zn58yOB8R8e6778aiRYti6tSpsWPHjoL3tH///pg1a1bcdttt8cILL5w2OB8R0d7eHq+++mqsW7eu4H0BAAAAAAAAAAAAAJBfRbl5fv369XHfffdFe3t78mzo0KFx5ZVXRm1tbTQ2NsbatWvj6NGjERGxefPmmDVrVixbtix69epVkJ6amppi2rRpsW3btpznF110UVxyySVRX18fx48fj927d8dvfvOb2Lp1a0H6AAAAAAAAAAAAAACg8Aoent+9e3fcc889SXA+k8nEnDlzYtq0aVFW9v8vvt+3b1/cddddsXHjxoiI2LJlS8ybNy8WLFiQ955aW1tj5syZOcH5yy67LObNmxcjR4485Z633347VqxYEc3NzXnvBwAAAAAAAAAAAACAwir78CVds3jx4mhpaUnqO++8M6ZPn54TnI+IqKuriyVLlsTw4cOTZytXrozNmzfnvafHHnss3njjjaS+6aab4oknnjhtcD4iYvDgwXHHHXfEN77xjbz3AwAAAAAAAAAAAABAYRU0PL9nz55Yvnx5Ug8ZMiRmzpx52vVVVVUxd+7cpM5ms7F48eK89rRly5b4/ve/n9RjxoyJhx56KDKZTF7PAQAAAAAAAAAAAADg3FHQ8Pzq1aujra0tqadMmRIVFRVn3HP11VfHsGHDknr9+vVx+PDhvPW0dOnSnJ6+/vWvR3l5ed7eDwAAAAAAAAAAAADAuaeg4fk1a9bk1JMmTerQvuuvvz753NraGs8//3xe+mlpaYmVK1cm9ahRo2LcuHF5eTcAAAAAAAAAAAAAAOeugobnX3rppeRzfX19DB48uEP7xo4dm1O/8MILeeln7dq1ObfY33jjjXl5LwAAAAAAAAAAAAAA57aCheebmpri4MGDST1q1KgO7x09enROvXXr1rz09L/+1//KqS+77LK8vBcAAAAAAAAAAAAAgHNbeaFe/Oabb+bUF1xwQYf31tfXR0VFRbS1tUVExLZt2/LS029+85vkc3l5eRLob2pqihUrVsSaNWtix44dcejQoejbt28MGjQorr766viX//JfdvjWfAAAAAAAAAAAAAAAzj0FC883NTXl1AMGDOjw3kwmE/37948dO3ac8l1n68Qb7BsaGqJnz57x3//7f4//9J/+Uxw+fDhn7ZEjR+L//J//Exs3bozHHnss/uzP/iz+/b//91FZWZmXXgAAAAAAAAAAAAAAKJ6ChedPDqNXV1d3an9NTU3y+f3334/W1taoqqo6637a29vj4MGDSd3Q0BDf+c53YvHixR+6t62tLX70ox/Fa6+9Ft/73veiV69eZ91HxO9/OQAAIO1OnHnMPwBAKTD/AAClxvwDAJQa8w8AUGrSOPMULTzf2eD7yetbWlq6FJ4/ePBgZLPZpN62bVu88sorERFRXl4eU6dOjcmTJ8fw4cMjk8nEm2++GU8//XT83d/9Xbz//vsREbFp06b4+te/Hv/lv/yXs+4jIqJPnz5d2g8A8FFj/gEASo35BwAoNeYfAKDUmH8AAD6aChaeb21tzakrKio6tb+ysvKM7+usk8P8/+8W+qqqqli8eHFcc801Od9/8pOfjE9+8pMxYcKE+MpXvhJHjx6NiIjnnnsu1qxZE+PHj+9SPwAAAAAAAAAAAAAAFE/BwvMn3xLf1tbWqf3Hjh074/u62s//c/fdd38gOH+iq6++Or761a/GN7/5zeTZ97///S6F5w8cOJBzCz4AQBplMpnkxg3zDwBQCsw/AECpMf8AAKXG/AMAlJoT55+0KFh4vrq6Oqfu7M3xJ6+vqanJaz8Rv//vk2655ZYP3fvFL34xvvvd78a+ffsiIuKll16K5ubmqK2tPatestms4RkAKCnmHwCg1Jh/AIBSY/4BAEqN+QcA4KOprFAvPjms3tLS0qn9J64vLy/v8s3zPXv2jPLy3N8V+PSnP92h91ZWVsZnPvOZpM5ms/Hyyy93qR8AAAAAAAAAAAAAAIqnYOH5/v3759RNTU0d3pvNZnPWn/yufPX08Y9/vMN7L7roopy6M38fAAAAAAAAAAAAAAC6V8HC88OHD8+pd+7c2eG9e/bsiba2tqQeNmxYQXrq06dPh/eevPbAgQN56QkAAAAAAAAAAAAAgMIrWHi+X79+0bt376R+/fXXO7x38+bNOXW+wvMjRozIqY8dO9bhvSevraqqyktPAAAAAAAAAAAAAAAUXsHC8xER48aNSz7v3bs3GhsbO7Rv06ZNOfXll1+el36uuOKKnLqpqanDe3ft2pVT9+3bNy89AQAAAAAAAAAAAABQeAUNz0+YMCGnfu655zq0b9WqVcnnqqqquOaaa/LSzzXXXBPV1dVJfXJI/0xefvnlnHr06NF56QkAAAAAAAAAAAAAgMIraHh+/PjxUVFRkdTLly+Ptra2M+7ZsGFDbNu2Lamvu+66nMB7V1RWVsbEiROT+pVXXonf/e53H7pv69at8dJLLyV1v3794uMf/3heegIAAAAAAAAAAAAAoPAKGp6vr6+PKVOmJHVjY2M8/vjjp13f2toaDz74YFJnMpmYPXv2adfv2LEjRo4cmfwZP378h/Z02223RXl5eVLPnz//jIH+999/P+bPnx/ZbDZ5duutt37oOQAAAAAAAAAAAAAAnDsKGp6PiJg1a1bU1NQk9cKFC2Pp0qXR3t6es27fvn0xY8aM2LJlS/LshhtuiNGjR+e1n4997GMxderUpH7ppZdi9uzZsXv37g+sfffdd+P222+PjRs3Js8GDhwY/+bf/Ju89gQAAAAAAAAAAAAAQGFlsideqV4g69ati9mzZ+cE5ocOHRpXXXVV1NbWxltvvRVr166No0ePJt+PGDEili1bFr169Trte3fs2BETJkxI6oEDB8aaNWs+tJ9jx47Fl770pXjppZeSZz179oxrrrkmhg8fHhERb775Zjz//PNx5MiRZM15550Xf/u3fxtjxozp2F/8NJqbm6MIP3YAgG6VyWSitrY2Isw/AEBpMP8AAKXG/AMAlBrzDwBQak6cf9KiKOH5iIinn3465s+fnxNGP51Ro0bFokWLYtCgQWdcd7bh+YjfD7Bf/epX4/nnn+/Q+oaGhli8eHFcfPHFHVr/YWcbngGAtPOPhwBAqTH/AAClxvwDAJQa8w8AUGrSGJ4vK9ZBkydPjqeeeiomTpwYFRUVp1zT0NAQt99+ezz55JMfGpzvqtra2vj+978fDzzwQIwYMeKM62bNmhXPPvtsXoLzAAAAAAAAAAAAAAAUX9Funj/R/v37Y9OmTbFr165oaWmJ+vr6GDx4cFx66aXRo0ePYrcTERFvvPFGbN26NZqamuL48ePRt2/f+PjHPx4XX3xxlJXl93cM/OYpAFAK3LwBAJQa8w8AUGrMPwBAqTH/AAClJo03z5d3x6F9+/aNCRMmdMfRp/WJT3wiPvGJT3R3GwAAAAAAAAAAAAAAFEB+r1QHAAAAAAAAAAAAAIBzkPA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqVfeHYc2NzfHpk2bYteuXXHo0KHo169fDBo0KMaOHRs9evTojpYAAAAAAAAAAAAAAEixoobnt23bFo888kisW7cu2traPvB9Q0NDTJ06NWbNmhWVlZXFbC3H0qVL4+GHH855dsUVV8SPfvSjbuoIAAAAAAAAAAAAAICuKCvWQStWrIibb745fv7zn58yOB8R8e6778aiRYti6tSpsWPHjmK1lmPHjh3xN3/zN91yNgAAAAAAAAAAAAAAhVGUm+fXr18f9913X7S3tyfPhg4dGldeeWXU1tZGY2NjrF27No4ePRoREZs3b45Zs2bFsmXLolevXsVoMXH//ffH4cOHi3omAAAAAAAAAAAAAACFVfDw/O7du+Oee+5JgvOZTCbmzJkT06ZNi7Ky/3/x/b59++Kuu+6KjRs3RkTEli1bYt68ebFgwYJCt5h4+umn45e//GVERDQ0NMS7775btLMBAAAAAAAAAAAAACicsg9f0jWLFy+OlpaWpL7zzjtj+vTpOcH5iIi6urpYsmRJDB8+PHm2cuXK2Lx5c6FbjIjfh/cffvjhiPh9wP+v/uqvinIuAAAAAAAAAAAAAACFV9Dw/J49e2L58uVJPWTIkJg5c+Zp11dVVcXcuXOTOpvNxuLFiwvZYuKb3/xm7N+/PyIipk6dGv/iX/yLopwLAAAAAAAAAAAAAEDhFTQ8v3r16mhra0vqKVOmREVFxRn3XH311TFs2LCkXr9+fRw+fLhgPUZE/NM//VM888wzERHR0NAQX/va1wp6HgAAAAAAAAAAAAAAxVXQ8PyaNWty6kmTJnVo3/XXX598bm1tjeeffz6vfZ3o8OHDcf/99yf1X/3VX8Uf/MEfFOw8AAAAAAAAAAAAAACKr6Dh+Zdeein5XF9fH4MHD+7QvrFjx+bUL7zwQl77OtF3vvOd2LlzZ0REfOYzn4kbb7yxYGcBAAAAAAAAAAAAANA9Chaeb2pqioMHDyb1qFGjOrx39OjROfXWrVvz1teJXnnllXjiiSciIqKqqirnBnoAAAAAAAAAAAAAANKjYOH5N998M6e+4IILOry3vr4+Kioqknrbtm156+v/ef/992Pu3Llx/PjxiIiYPXt2DBkyJO/nAAAAAAAAAAAAAADQ/Qp68/yJBgwY0OG9mUwm+vfvf9p35cOSJUvijTfeiIiI4cOHx5e//OW8nwEAAAAAAAAAAAAAwLmhYOH5w4cP59TV1dWd2l9TU5N8fv/996O1tTUvfUVEbN++PR577LGI+H1Q/4EHHojKysq8vR8AAAAAAAAAAAAAgHNLeaFefHJ4vqqqqlP7T17f0tLS6XecSjabjblz5yZh/Jtvvjkuv/zyLr+3MzKZTFHPAwDoDifOPOYfAKAUmH8AgFJj/gEASo35BwAoNWmceQoWnj/5pviKiopO7T/5Jvh83Tz/k5/8JDZu3BgREX379o1/9+/+XV7e2xl9+vQp+pkAAN3J/AMAlBrzDwBQasw/AECpMf8AAHw0lRXqxSffEt/W1tap/ceOHTvj+87Gu+++G9/+9reTes6cOdG3b98uvxcAAAAAAAAAAAAAgHNbwW6er66uzqk7e3P8yetramq63NNf//Vfx3vvvRcREVdccUX86Z/+aZffeTYOHDgQ2Wy2W84GACiWTCaT3Lhh/gEASoH5BwAoNeYfAKDUmH8AgFJz4vyTFkULz7e0tHRq/4nry8vLu3zz/OrVq2PVqlUREVFRUREPPPBAl97XFdls1vAMAJQU8w8AUGrMPwBAqTH/AAClxvwDAPDRVFaoF/fv3z+nbmpq6vDebDabs/7kd52Nhx9+OPk8c+bMGDZsWJffCQAAAAAAAAAAAADAR0PBbp4fPnx4Tr1z584O792zZ0+0tbUldT6C7vv3708+f/e7343vfve7ndq/cePGGD16dFJffvnl8cMf/rDLfQEAAAAAAAAAAAAAUHgFC8/369cvevfuHQcPHoyIiNdff73Dezdv3pxT5/uW+OPHj3d5X3t7e77aAQAAAAAAAAAAAACgwMoK+fJx48Yln/fu3RuNjY0d2rdp06ac+vLLL89rXwAAAAAAAAAAAAAAlJaC3TwfETFhwoRYt25dUj/33HMxc+bMD923atWq5HNVVVVcc801Xe7lxRdf7NT6HTt2xIQJE5L6iiuuiB/96Edd7gMAAAAAAAAAAAAAgOIr6M3z48ePj4qKiqRevnx5tLW1nXHPhg0bYtu2bUl93XXXRXV1dcF6BAAAAAAAAAAAAAAg/Qoanq+vr48pU6YkdWNjYzz++OOnXd/a2hoPPvhgUmcymZg9e/Zp1+/YsSNGjhyZ/Bk/fnx+GgcAAAAAAAAAAAAAIFUKGp6PiJg1a1bU1NQk9cKFC2Pp0qXR3t6es27fvn0xY8aM2LJlS/LshhtuiNGjRxe6RQAAAAAAAAAAAAAAUq680Af0798/FixYELNnz4729vbIZrPx8MMPx49//OO46qqrora2Nt56661Yu3ZtHD16NNk3YsSI+A//4T8Uuj0AAAAAAAAAAAAAAEpAwcPzERGf/exn46GHHor58+fHkSNHIiJi+/btsX379lOuHzVqVCxatCh69epVjPYAAAAAAAAAAAAAAEi5smIdNHny5Hjqqadi4sSJUVFRcco1DQ0Ncfvtt8eTTz4ZgwYNKlZrAAAAAAAAAAAAAACkXCabzWaLfej+/ftj06ZNsWvXrmhpaYn6+voYPHhwXHrppdGjR49it1N0zc3N0Q0/dgCAospkMlFbWxsR5h8AoDSYfwCAUmP+AQBKjfkHACg1J84/aVHeHYf27ds3JkyY0B1HAwAAAAAAAAAAAABQgsq6uwEAAAAAAAAAAAAAACg04XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUK++OQ5ubm2PTpk2xa9euOHToUPTr1y8GDRoUY8eOjR49ehStj0OHDsX//t//O958881obm6Otra2+IM/+IMYMGBAfOpTn4q6urqi9QIAAAAAAAAAAAAAQOEUNTy/bdu2eOSRR2LdunXR1tb2ge8bGhpi6tSpMWvWrKisrCxID6+++mr84z/+Y/zqV7+KzZs3R3t7+2nXXnLJJTFt2rS48cYbI5PJFKQfAAAAAAAAAAAAAAAKL5PNZrPFOGjFihUxf/78OHz48IeuHT16dCxcuDAGDRqU1x6mT58ev/rVrzq97+qrr45vf/vb0a9fv7z00dzcHEX6sQMAdJtMJhO1tbURYf4BAEqD+QcAKDXmHwCg1Jh/AIBSc+L8kxZFuXl+/fr1cd999+Xc8j506NC48soro7a2NhobG2Pt2rVx9OjRiIjYvHlzzJo1K5YtWxa9evXKWx/79u37wLMLLrggPvWpT0W/fv2iuro69uzZExs3bozt27cnazZs2BBf+tKX4m//9m+jb9++eesHAAAAAAAAAAAAAIDiKHh4fvfu3XHPPfckwflMJhNz5syJadOmRVlZWbJu3759cdddd8XGjRsjImLLli0xb968WLBgQd57qq+vjz/90z+NL3zhC/Gxj33sA99ns9lYtWpVzJs3Lw4cOBAREVu3bo37778//uZv/ibv/QAAAAAAAAAAAAAAUFhlH76kaxYvXhwtLS1Jfeedd8b06dNzgvMREXV1dbFkyZIYPnx48mzlypWxefPmvPVSV1cX9913X6xduzbuvffeUwbnI34f8J80aVIsXbo0zjvvvOT5qlWr4pVXXslbPwAAAAAAAAAAAAAAFEdBw/N79uyJ5cuXJ/WQIUNi5syZp11fVVUVc+fOTepsNhuLFy/OWz/f+973Yvr06VFZWdmh9WPGjIlp06blPFu1alXe+gEAAAAAAAAAAAAAoDgKGp5fvXp1tLW1JfWUKVOioqLijHuuvvrqGDZsWFKvX78+Dh8+nJd+ysvLO73nxhtvzKndPA8AAAAAAAAAAAAA8NFT0PD8mjVrcupJkyZ1aN/111+ffG5tbY3nn38+r311xoUXXphT7927t5s6AQAAAAAAAAAAAADgbBU0PP/SSy8ln+vr62Pw4MEd2jd27Nic+oUXXshrX53R0tKSU5/N7fUAAAAAAAAAAAAAAHSvgoXnm5qa4uDBg0k9atSoDu8dPXp0Tr1169a89dVZv/3tb3PqAQMGdFMnAAAAAAAAAAAAAACcrYKF5998882c+oILLujw3vr6+qioqEjqbdu25a2vzvrZz36WU1911VXd1AkAAAAAAAAAAAAAAGeroDfPn6gzN7ZnMpno37//ad9VLNu3b49nnnkmqXv06BF//Md/3C29AAAAAAAAAAAAAABw9soL9eLDhw/n1NXV1Z3aX1NTk3x+//33o7W1NaqqqvLSW0e0t7fHN77xjWhra0ueTZ48OQYPHtzld2cymS6/AwDgXHfizGP+AQBKgfkHACg15h8AoNSYfwCAUpPGmado4fnOBt9PXt/S0lLU8Pyjjz4aL7zwQlLX1dXFvffem5d39+nTJy/vAQD4qDD/AAClxvwDAJQa8w8AUGrMPwAAH01lhXpxa2trTl1RUdGp/ZWVlWd8XyH94he/iEcffTSpM5lM/Mf/+B+jrq6uaD0AAAAAAAAAAAAAAJA/Bbt5/uRb4tva2jq1/9ixY2d8X6G89NJL8bWvfS2y2Wzy7I477ojx48fn7YwDBw7kvB8AII0ymUxy44b5BwAoBeYfAKDUmH8AgFJj/gEASs2J809aFCw8X11dnVN39ub4k9fX1NR0uacP89vf/ja+8pWvxNGjR5NnX/ziF+OOO+7I6znZbNbwDACUFPMPAFBqzD8AQKkx/wAApcb8AwDw0VRWqBefHJ5vaWnp1P4T15eXlxf85vnGxsb48pe/HO+9917y7IYbboh58+YV9FwAAAAAAAAAAAAAAAqvYOH5/v3759RNTU0d3pvNZnPWn/yufGtqaoovfelL8e677ybPrr322vj2t78dZWUF+xEBAAAAAAAAAAAAAFAkBUuGDx8+PKfeuXNnh/fu2bMn2traknrYsGF56+tk+/bti+nTp+f0d9lll8WiRYuioqKiYOcCAAAAAAAAAAAAAFA8BQvP9+vXL3r37p3Ur7/+eof3bt68OacuVHj+0KFDMWPGjNi6dWvybMyYMfFf/+t/jZ49exbkTAAAAAAAAAAAAAAAiq9g4fmIiHHjxiWf9+7dG42NjR3at2nTppz68ssvz2tfERFHjx6NWbNmxWuvvZY8GzFiRCxZsiR69eqV9/MAAAAAAAAAAAAAAOg+BQ3PT5gwIad+7rnnOrRv1apVyeeqqqq45ppr8tpXW1tb/OVf/mW8+OKLybMhQ4bED37wg6irq8vrWQAAAAAAAAAAAAAAdL+ChufHjx8fFRUVSb18+fJoa2s7454NGzbEtm3bkvq6666L6urqvPXU3t4ec+bMifXr1yfPBgwYEEuXLo3+/fvn7RwAAAAAAAAAAAAAAM4dBQ3P19fXx5QpU5K6sbExHn/88dOub21tjQcffDCpM5lMzJ49+7Trd+zYESNHjkz+jB8//kN7mj9/fjz77LNJff7558fSpUtj0KBBH7oXAAAAAAAAAAAAAICPpoKG5yMiZs2aFTU1NUm9cOHCWLp0abS3t+es27dvX8yYMSO2bNmSPLvhhhti9OjReetlwYIFsWzZsqTu06dP/OAHP4hhw4bl7QwAAAAAAAAAAAAAAM49mWw2my30IevWrYvZs2fnBOaHDh0aV111VdTW1sZbb70Va9eujaNHjybfjxgxIpYtWxa9evU67Xt37NgREyZMSOqBAwfGmjVrTrt+5MiROXUmk4myss7//sDmzZs7vedEzc3NUYQfOwBAt8pkMlFbWxsR5h8AoDSYfwCAUmP+AQBKjfkHACg1J84/aVFejEM++9nPxkMPPRTz58+PI0eORETE9u3bY/v27adcP2rUqFi0aNEZg/P5kM1m4/jx4wU9AwAAAAAAAAAAAACA7tf5a9fP0uTJk+Opp56KiRMnRkVFxSnXNDQ0xO233x5PPvlkDBo0qFitAQAAAAAAAAAAAACQcplsN/z/Qfv3749NmzbFrl27oqWlJerr62Pw4MFx6aWXRo8ePYrdTtH5b5sAgFLgv60EAEqN+QcAKDXmHwCg1Jh/AIBSc+L8kxbl3XFo3759Y8KECd1xNAAAAAAAAAAAAAAAJaisuxsAAAAAAAAAAAAAAIBCE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9cq749Dm5ubYtGlT7Nq1Kw4dOhT9+vWLQYMGxdixY6NHjx5F76elpSVefPHFaGpqiubm5qirq4uBAwfGuHHjorKysuj9AAAAAAAAAAAAAACQX0UNz2/bti0eeeSRWLduXbS1tX3g+4aGhpg6dWrMmjWrKKH13bt3x4IFC2LVqlVx+PDhD3zfp0+fuOmmm+Luu++OXr16FbwfAAAAAAAAAAAAAAAKo6xYB61YsSJuvvnm+PnPf37K4HxExLvvvhuLFi2KqVOnxo4dOwrazy9/+cu46aab4u///u9PGZyPiDhw4ED86Ec/ismTJ8frr79e0H4AAAAAAAAAAAAAACicTDabzRb6kPXr18dXvvKVaG9vT54NHTo0rrzyyqitrY3GxsZYu3ZtHD16NPl+xIgRsWzZsoLc+P7aa6/FLbfcEkeOHEme9evXL/7oj/4o6uvr45133om1a9fGe++9l3zf0NAQP/nJT2LAgAFdPr+5uTmK8GMHAOhWmUwmamtrI8L8AwCUBvMPAFBqzD8AQKkx/wAApebE+SctCh6e3717d0yaNClaWlp+f2AmE3PmzIlp06ZFWdn/v/h+3759cdddd8XGjRuTZzfeeGMsWLAgr/0cPXo0Jk2aFO+8807y7M///M/jnnvuicrKyuTZoUOHYu7cubFy5crk2dixY+PHP/5xl3swPAMApcA/HgIApcb8AwCUGvMPAFBqzD8AQKlJY3i+7MOXdM3ixYuT4HxExJ133hnTp0/PCc5HRNTV1cWSJUti+PDhybOVK1fG5s2b89rPE088kROc/8IXvhBz5szJCc5HRPTq1SseeeSRuPrqq5NnL7/8cvziF7/Iaz8AAAAAAAAAAAAAABReQcPze/bsieXLlyf1kCFDYubMmaddX1VVFXPnzk3qbDYbixcvzls/bW1tsWTJkqTu3bt3zJkz57Try8rK4oEHHsgJ+j/22GN56wcAAAAAAAAAAAAAgOIoaHh+9erV0dbWltRTpkyJioqKM+65+uqrY9iwYUm9fv36OHz4cF76+fWvfx379+9P6s9//vPRp0+fM+658MIL49Of/nRSv/baa/H222/npR8AAAAAAAAAAAAAAIqjoOH5NWvW5NSTJk3q0L7rr78++dza2hrPP/98Qfo58ZwzObnv1atX56UfAAAAAAAAAAAAAACKo6Dh+Zdeein5XF9fH4MHD+7QvrFjx+bUL7zwQl76efHFF5PPPXr0iEsuuaRD+y699NKC9AMAAAAAAAAAAAAAQHEULDzf1NQUBw8eTOpRo0Z1eO/o0aNz6q1bt3a5n/b29ti+fXtSX3jhhVFTU9OhvcOGDYuePXvmtR8AAAAAAAAAAAAAAIqnYOH5N998M6e+4IILOry3vr4+Kioqknrbtm1d7mfnzp3R2tp6Vv1kMpkYMGBAUr/99tvR1tbW5Z4AAAAAAAAAAAAAACiOgt48f6ITw+cfJpPJRP/+/U/7rmL3ExE5/bz//vuxd+/eLvcEAAAAAAAAAAAAAEBxFCw8f/jw4Zy6urq6U/tramqSz++//37OrfFno6WlJW/9nOp9AAAAAAAAAAAAAACcu8oL9eKTw/NVVVWd2n/y+paWlk6/o5D9nPy+zshkMme9FwDgo+LEmcf8AwCUAvMPAFBqzD8AQKkx/wAApSaNM0/BwvMn3xRfUVHRqf2VlZVnfN9HuZ8+ffqc9V4AgI8i8w8AUGrMPwBAqTH/AAClxvwDAPDRVFaoF598U3tbW1un9h87duyM7/uo9wMAAAAAAAAAAAAAQPEULDxfXV2dU3f2pvaT19fU1JxT/Zz8PgAAAAAAAAAAAAAAzl1FC8+3tLR0av+J68vLy7t80/vJ4fuu9HOq9wEAAAAAAAAAAAAAcO4qWHi+f//+OXVTU1OH92az2Zz1J7+r2P1EROzatSv5XF5eHueff36XewIAAAAAAAAAAAAAoDgKFp4fPnx4Tr1z584O792zZ0+0tbUl9bBhw7rcz8CBA6Nnz55n1U82m80Jzw8ZMiQqKiq63BMAAAAAAAAAAAAAAMVRsPB8v379onfv3kn9+uuvd3jv5s2bc+p8hOfLyspi6NChSd3Y2BgtLS0d2rt169ZobW3Naz8AAAAAAAAAAAAAABRPwcLzERHjxo1LPu/duzcaGxs7tG/Tpk059eWXX573fo4fPx6vvPJKh/a9/PLLBekHAAAAAAAAAAAAAIDiKGh4fsKECTn1c88916F9q1atSj5XVVXFNddc0639nLzu5PcAAAAAAAAAAAAAAHBuK2h4fvz48VFRUZHUy5cvj7a2tjPu2bBhQ2zbti2pr7vuuqiurs5LP1dccUXU1dUl9bPPPhvvvffeGfe89dZb8atf/Sqpx4wZE4MHD85LPwAAAAAAAAAAAAAAFEdBw/P19fUxZcqUpG5sbIzHH3/8tOtbW1vjwQcfTOpMJhOzZ88+7fodO3bEyJEjkz/jx48/Yz8VFRUxY8aMpD548GA8/PDDp13f3t4e999/f7S3tyfPbrvttjOeAQAAAAAAAAAAAADAuaeg4fmIiFmzZkVNTU1SL1y4MJYuXZoTSI+I2LdvX8yYMSO2bNmSPLvhhhti9OjRee3nlltuiT/8wz9M6p/+9KfxrW99K44dO5az7tChQ/G1r30tNmzYkDwbO3ZsTJw4Ma/9AAAAAAAAAAAAAABQeJlsNpst9CHr1q2L2bNn5wTmhw4dGldddVXU1tbGW2+9FWvXro2jR48m348YMSKWLVsWvXr1Ou17d+zYERMmTEjqgQMHxpo1az60n9deey1uueWWOHLkSPKsX79+cd1118X5558fu3btijVr1sR7772XfN/Q0BA/+clPYsCAAR3+ewMAAAAAAAAAAAAAcG4oSng+IuLpp5+O+fPn5wTWT2fUqFGxaNGiGDRo0BnXnW14PiLin/7pn+Lee++N5ubmD107aNCgWLhwYd5vwQcAAAAAAAAAAAAAoDjKinXQ5MmT46mnnoqJEydGRUXFKdc0NDTE7bffHk8++eSHBue76tprr41nnnkmJk+eHOedd94p1/Tp0yduvfXWWLFiheA8AAAAAAAAAAAAAMBHWNFunj/R/v37Y9OmTbFr165oaWmJ+vr6GDx4cFx66aXRo0ePYrcTLS0t8eKLL8Y777wTBw4ciLq6uhg4cGBcdtllUVlZWfR+AAAAAAAAAAAAAADIr24JzwMAAAAAAAAAAAAAQDGVdXcDAAAAAAAAAAAAAABQaMLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqVfe3Q2cC1paWuLFF1+MpqamaG5ujrq6uhg4cGCMGzcuKisru7s9AAAAAAAAAAAAAAC6qGjh+ZaWlti8eXO88sor8corr8Srr74aO3fuTL4fOHBgrFmzpljtRETE7t27Y8GCBbFq1ao4fPjwB77v06dP3HTTTXH33XdHr169itobAAAAAAAAAAAAAAD5k8lms9lCHrB06dJ46qmnYsuWLdHe3n7adcUOz//yl7+Me++9N/bv3/+hawcPHhwLFy6MUaNGFaEzAAAAAAAAAAAAAADyreA3z7/wwgvxu9/9rtDHdMprr70Wd9xxRxw5ciR51q9fv/ijP/qjqK+vj3feeSfWrl0b7733XkREvP322/EXf/EX8ZOf/CQGDBjQXW0DAAAAAAAAAAAAAHCWCh6eP5Xq6uoYM2ZMvPbaa3H48OGinn306NG4/fbbc4Lzf/7nfx733HNPVFZWJs8OHToUc+fOjZUrV0ZExLvvvht33313/PjHPy5qvwAAAAAAAAAAAAAAdF3Bw/NVVVVxySWXxMUXXxyf/OQn4+KLL47hw4dHWVlZjB8/vujh+SeeeCLeeeedpP7CF74Qc+bM+cC6Xr16xSOPPBL79++PDRs2RETEyy+/HL/4xS9i4sSJResXAAAAAAAAAAAAAICuy2Sz2Wx3HT5+/PjYuXNnREQMHDgw1qxZU9Dz2tra4tprr439+/dHRETv3r1j9erV0adPn9Pueeutt2LSpEnR3t4eERFjxoyJp556qqB9AgAAAAAAAAAAAACQX2Xd3UAx/frXv06C8xERn//8588YnI+IuPDCC+PTn/50Ur/22mvx9ttvF6xHAAAAAAAAAAAAAADyr6TC8yffbH/99dd3aN+kSZNy6tWrV+etJwAAAAAAAAAAAAAACq+kwvMvvvhi8rlHjx5xySWXdGjfpZdemlO/8MILee0LAAAAAAAAAAAAAIDCKpnwfHt7e2zfvj2pL7zwwqipqenQ3mHDhkXPnj2TeuvWrfluDwAAAAAAAAAAAACAAiqZ8PzOnTujtbU1qS+44IIO781kMjFgwICkfvvtt6OtrS2v/QEAAAAAAAAAAAAAUDglE55vamrKqU8Mw3dE//79k8/vv/9+7N27Ny99AQAAAAAAAAAAAABQeCUTnm9pacmpq6urO7W/pqbmjO8DAAAAAAAAAAAAAODcVTLh+cOHD+fUVVVVndp/8vqT3wcAAAAAAAAAAAAAwLmrZMLzra2tOXVFRUWn9ldWVp7xfQAAAAAAAAAAAAAAnLvKu7uBYjn55vi2trZO7T927NgZ39cZBw4ciGw2e9b7AQA+CjKZTPTp0ycizD8AQGkw/wAApcb8AwCUGvMPAFBqTpx/0qJkwvPV1dU5dWdvjj95/cnv64xsNmt4BgBKivkHACg15h8AoNSYfwCAUmP+AQD4aCrr7gaKpaamJqduaWnp1P6T15/8PgAAAAAAAAAAAAAAzl0lE57v379/Tt3U1NSp/bt27Uo+l5eXx/nnn5+XvgAAAAAAAAAAAAAAKLySCc8PHDgwevbsmdQ7d+7s8N5sNpsTnh8yZEhUVFTktT8AAAAAAAAAAAAAAAqnZMLzZWVlMXTo0KRubGyMlpaWDu3dunVrtLa2JvWwYcPy3R4AAAAAAAAAAAAAAAVUMuH5iIhx48Yln48fPx6vvPJKh/a9/PLLOfXll1+e174AAAAAAAAAAAAAACiskgrPT5gwIad+7rnnOrTv5HUnvwcAAAAAAAAAAAAAgHNbSYXnr7jiiqirq0vqZ599Nt57770z7nnrrbfiV7/6VVKPGTMmBg8eXLAeAQAAAAAAAAAAAADIv490eH7Hjh0xcuTI5M/48ePPuL6ioiJmzJiR1AcPHoyHH374tOvb29vj/vvvj/b29uTZbbfd1vXGAQAAAAAAAAAAAAAoqo90eP5s3HLLLfGHf/iHSf3Tn/40vvWtb8WxY8dy1h06dCi+9rWvxYYNG5JnY8eOjYkTJxatVwAAAAAAAAAAAAAA8qO80Afs3Lkz/viP//iU3x0/fjxn3ejRo0+57r/9t/8WV1xxRV766dmzZzz66KNxyy23xJEjRyIi4gc/+EH8wz/8Q1x33XVx/vnnx65du2LNmjXx3nvvJfsaGhriO9/5Tl56AAAAAAAAAAAAAACguAoens9mszkh+TM53bpsNpvPlmLMmDGxcOHCuPfee6O5uTkiInbv3h3Lly8/5fpBgwbFwoULY8CAAXntAwAAAAAAAAAAAACA4ijr7ga6y7XXXhvPPPNMTJ48Oc4777xTrunTp0/ceuutsWLFitPeig8AAAAAAAAAAAAAwLkvk833te4fQS0tLfHiiy/GO++8EwcOHIi6uroYOHBgXHbZZVFZWZn385qbm/N+mz4AwLkmk8lEbW1tRJh/AIDSYP4BAEqN+QcAKDXmHwCg1Jw4/6RFeXc3cC6oqamJ6667rrvbAAAAAAAAAAAAAACgQMq6uwEAAAAAAAAAAAAAACg04XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABSr7w7Dm1ubo5NmzbFrl274tChQ9GvX78YNGhQjB07Nnr06FHUXtrb22PLli3x+uuvx/79++PIkSNRU1MT559/fowePTqGDh0amUymqD0BAAAAAAAAAAAAAJBfRQ3Pb9u2LR555JFYt25dtLW1feD7hoaGmDp1asyaNSsqKysL2svBgwdjyZIl8dOf/jTefffd064bOHBg/Nmf/VlMmzYtqqqqCtoTAAAAAAAAAAAAAACFkclms9liHLRixYqYP39+HD58+EPXjh49OhYuXBiDBg0qSC8vv/xy3HXXXdHU1NThPR/72Mfi0UcfjeHDh3f5/Obm5ijSjx0AoNtkMpmora2NCPMPAFAazD8AQKkx/wAApcb8AwCUmhPnn7QoSnh+/fr18ZWvfCXa29uTZ0OHDo0rr7wyamtro7GxMdauXRtHjx5Nvh8xYkQsW7YsevXqldde3njjjbjlllvi0KFDybNMJhPjxo2LMWPGRO/evePAgQPxm9/8Jl5++eWcvQ0NDfHkk0/GBRdc0KUeDM8AQCnwj4cAQKkx/wAApcb8AwCUGvMPAFBqhOfPwu7du2PSpEnR0tLy+wMzmZgzZ05MmzYtysrKknX79u2Lu+66KzZu3Jg8u/HGG2PBggV56yWbzcaUKVPilVdeSZ5ddNFF8cgjj8RFF130gfWbN2+Or371q7Ft27bk2cSJE+PRRx/tUh+GZwCgFPjHQwCg1Jh/AIBSY/4BAEqN+QcAKDVpDM+XffiSrlm8eHESnI+IuPPOO2P69Ok5wfmIiLq6uliyZEkMHz48ebZy5crYvHlz3np55ZVXcoLzffr0iR/84AenDM5HRIwePTp++MMfRu/evZNnq1evjqamprz1BAAAAAAAAAAAAABA4RU0PL9nz55Yvnx5Ug8ZMiRmzpx52vVVVVUxd+7cpM5ms7F48eK89bNhw4acesqUKdHQ0HDGPf37949//a//dU5Pv/71r/PWEwAAAAAAAAAAAAAAhVfQ8Pzq1aujra0tqadMmRIVFRVn3HP11VfHsGHDknr9+vVx+PDhvPRz8o3xn/rUpzq079JLL82pd+/enZd+AAAAAAAAAAAAAAAojoKG59esWZNTT5o0qUP7rr/++uRza2trPP/883npp729Pafu2bNnh/add955OXUmk8lLPwAAAAAAAAAAAAAAFEdBw/MvvfRS8rm+vj4GDx7coX1jx47NqV944YW89DNo0KCc+p133unQvp07d+bUF154YV76AQAAAAAAAAAAAACgOAoWnm9qaoqDBw8m9ahRozq8d/To0Tn11q1b89LTtddem1P/j//xPzq0b+XKlcnn6urquPLKK/PSDwAAAAAAAAAAAAAAxVGw8Pybb76ZU19wwQUd3ltfXx8VFRVJvW3btrz09IlPfCI++9nPJvXzzz8ff/d3f3fGPT/84Q/jf/7P/5nU06dPj969e+elHwAAAAAAAAAAAAAAiqOgN8+faMCAAR3em8lkon///qd9V1f89V//dQwePDip58+fH1/96lfj17/+dRw6dCiy2WwcPHgwNmzYEHfeeWd885vfTNZ+7nOfi9mzZ+etFwAAAAAAAAAAAAAAiqO8UC8+fPhwTl1dXd2p/TU1Ncnn999/P1pbW6OqqqrLffXr1y+WLVsW8+fPj3/8x3+MiIhnn302nn322dPu6dWrV8yYMSNmzpwZPXr06HIPAAAAAAAAAAAAAAAUV9HC850Nvp+8vqWlJS/h+YiI888/PxYuXBjr16+PefPmxa5du067dsiQITFv3ry49tpr83J2xO9v1gcASLsTZx7zDwBQCsw/AECpMf8AAKXG/AMAlJo0zjwFC8+3trbm1BUVFZ3aX1lZecb3dUVTU1M89NBD8dxzz0U2mz3j2sbGxpgxY0aMHTs2HnzwwRgxYkSXz+/Tp0+X3wEA8FFi/gEASo35BwAoNeYfAKDUmH8AAD6aChaeP/mW+La2tk7tP3bs2Bnfd7beeOON+NKXvhT79++PiN//RsTnP//5uPnmm+MTn/hE9O7dOw4ePBibN2+Ov//7v49nn302stlsvPzyy/Gv/tW/iu9973tx+eWX56UXAAAAAAAAAAAAAACKo2Dh+erq6py6szfHn7y+pqamyz0dOHAg/uIv/iIJzldUVMTChQvjc5/7XM66urq6+MxnPhOf+cxn4sYbb4y//Mu/jLa2tjhy5Ejccccd8Q//8A/R0NDQpT4+7MZ7AICPukwmk9y4Yf4BAEqB+QcAKDXmHwCg1Jh/AIBSc+L8kxZFC8+3tLR0av+J68vLy/Ny8/x3v/vd2L17d1LffffdHwjOn2z8+PFx1113xX/+z/85IiKam5tj8eLFMW/evLPuI5vNGp4BgJJi/gEASo35BwAoNeYfAKDUmH8AAD6aygr14v79++fUTU1NHd6bzWZz1p/8rrORzWbj6aefTurq6ur4t//233Zo76233przywDPPPNMtLe3d7knAAAAAAAAAAAAAACKo2Dh+eHDh+fUO3fu7PDePXv2RFtbW1IPGzasy/00NjbGvn37kvqSSy6Jnj17dmhvz5494+KLL07q9957L956660u9wQAAAAAAAAAAAAAQHEULDzfr1+/6N27d1K//vrrHd67efPmnDof4fm9e/fm1PX19Z3a39DQkFPv37+/yz0BAAAAAAAAAAAAAFAcBQvPR0SMGzcu+bx3795obGzs0L5Nmzbl1JdffnmXe6mqqsqpW1tbO7X/yJEjOXV1dXWXewIAAAAAAAAAAAAAoDgKGp6fMGFCTv3cc891aN+qVauSz1VVVXHNNdd0uZfzzz8/p966dWun9p+8vq6urss9AQAAAAAAAAAAAABQHAUNz48fPz4qKiqSevny5dHW1nbGPRs2bIht27Yl9XXXXZeXW94HDBgQ/fr1S+o333wz3njjjQ7tffXVV2P79u1JPXDgwJx3AQAAAAAAAAAAAABwbitoeL6+vj6mTJmS1I2NjfH444+fdn1ra2s8+OCDSZ3JZGL27NmnXb9jx44YOXJk8mf8+PFn7Odzn/tcTj1//vw4duzYGfe0trbGAw88kPPsw84BAAAAAAAAAAAAAODcUtDwfETErFmzoqamJqkXLlwYS5cujfb29px1+/btixkzZsSWLVuSZzfccEOMHj06b73MnDkz5yb8l19+Ob785S9HY2PjKde/+eabMW3atHj11VeTZ1VVVTFjxoy89QQAAAAAAAAAAAAAQOFlstlsttCHrFu3LmbPnp0TmB86dGhcddVVUVtbG2+99VasXbs2jh49mnw/YsSIWLZsWfTq1eu0792xY0dMmDAhqQcOHBhr1qw5Yy/Lli2LefPm5Tzr0aNHjBs3LkaPHh29evWKgwcPxmuvvRabNm36QMj/W9/6VkyePLkjf+3Tam5ujiL82AEAulUmk4na2tqIMP8AAKXB/AMAlBrzDwBQasw/AECpOXH+SYvyYhzy2c9+Nh566KGYP39+HDlyJCIitm/fHtu3bz/l+lGjRsWiRYvOGJw/W1OnTo2IiG9+85tJWP/48eOxcePG2Lhx42n3VVdXx9y5c7scnAcAAAAAAAAAAAAAoPjKinXQ5MmT46mnnoqJEydGRUXFKdc0NDTE7bffHk8++WQMGjSoYL1MnTo1fvazn8UXv/jFqKmpOePaXr16xS233BI/+9nP4uabby5YTwAAAAAAAAAAAAAAFE4m2w3/f9D+/ftj06ZNsWvXrmhpaYn6+voYPHhwXHrppdGjR4+i9nL8+PH47W9/G7/73e+iubk5Dh8+HNXV1VFbWxsjR46Miy66KO89+W+bAIBS4L+tBABKjfkHACg15h8AoNSYfwCAUnPi/JMW5d1xaN++fWPChAndcfQH9OjRI0aPHh2jR4/u7lYAAAAAAAAAAAAAACiQsu5uAAAAAAAAAAAAAAAACk14HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPXKu+PQ5ubm2LRpU+zatSsOHToU/fr1i0GDBsXYsWOjR48e3dFSRETs3bs3/vmf/znefvvtaGlpicrKyqirq4shQ4bEqFGjoqamptt6AwAAAAAAAAAAAADg7BU1PL9t27Z45JFHYt26ddHW1vaB7xsaGmLq1Kkxa9asqKysLFpfq1evjqVLl8aLL74Y2Wz2lGvKyspizJgxceutt8af/MmfFK03AAAAAAAAAAAAAAC6rqxYB61YsSJuvvnm+PnPf37K4HxExLvvvhuLFi2KqVOnxo4dOwre0/79+2PWrFlx2223xQsvvHDa4HxERHt7e7z66quxbt26gvcFAAAAAAAAAAAAAEB+FeXm+fXr18d9990X7e3tybOhQ4fGlVdeGbW1tdHY2Bhr166No0ePRkTE5s2bY9asWbFs2bLo1atXQXpqamqKadOmxbZt23KeX3TRRXHJJZdEfX19HD9+PHbv3h2/+c1vYuvWrQXpAwAAAAAAAAAAAACAwit4eH737t1xzz33JMH5TCYTc+bMiWnTpkVZ2f+/+H7fvn1x1113xcaNGyMiYsuWLTFv3rxYsGBB3ntqbW2NmTNn5gTnL7vsspg3b16MHDnylHvefvvtWLFiRTQ3N+e9HwAAAAAAAAAAAAAACqvsw5d0zeLFi6OlpSWp77zzzpg+fXpOcD4ioq6uLpYsWRLDhw9Pnq1cuTI2b96c954ee+yxeOONN5L6pptuiieeeOK0wfmIiMGDB8cdd9wR3/jGN/LeDwAAAAAAAAAAAAAAhVXQ8PyePXti+fLlST1kyJCYOXPmaddXVVXF3LlzkzqbzcbixYvz2tOWLVvi+9//flKPGTMmHnroochkMnk9BwAAAAAAAAAAAACAc0dBw/OrV6+Otra2pJ4yZUpUVFSccc/VV18dw4YNS+r169fH4cOH89bT0qVLc3r6+te/HuXl/5e9uw+ysjzzxH+dpl+wG4YGu4GRFwngC010g/hGiGMCTElpJsuYXUjGtYwTRkKMozHZMVMzGvyNm5jMamUGE7LGhE0lmQRJHE1GVybhrSaEDQrMkogmCzS2zUgjL43QQHOgz++P1DzLQYFu+pzT+JzPp4qqcz3nvu/nov+6ivr2TWXBzgcAAAAAAAAAAAAA4NxT1PD8ihUr8uqZM2d2a98NN9yQfO7s7Iw1a9YUpJ+Ojo547rnnknrChAkxefLkgpwNAAAAAAAAAAAAAMC5q6jh+fXr1yefGxoaYtSoUd3aN2nSpLz6hRdeKEg/K1euzLvF/qabbirIuQAAAAAAAAAAAAAAnNuKFp5va2uLAwcOJPWECRO6vbepqSmv3rp1a0F6+td//de8+sorryzIuQAAAAAAAAAAAAAAnNsqi3Xwtm3b8uoLLrig23sbGhqiqqoqstlsREQ0NzcXpKdf//rXyefKysok0N/W1hbPPPNMrFixIlpbW+PgwYMxePDgGDlyZEyZMiX+6I/+qNu35gMAAAAAAAAAAAAAcO4pWni+ra0trx4+fHi392YymRg2bFi0tra+7Vln68Qb7BsbG6N///7xD//wD/G3f/u3cejQoby1hw8fjn/7t3+LdevWxde+9rX4yEc+En/xF38R1dXVBekFAAAAAAAAAAAAAIDSKVp4/uQwem1tbY/219XVJZ+PHTsWnZ2dUVNTc9b9dHV1xYEDB5K6sbExvvKVr8SiRYvOuDebzcZ3vvOdeOmll+Ib3/hGDBgw4Kz7iPjdLwcAAKTdiTOP+QcAKAfmHwCg3Jh/AIByY/4BAMpNGmeekoXnexp8P3l9R0dHr8LzBw4ciFwul9TNzc2xadOmiIiorKyMOXPmxKxZs2LcuHGRyWRi27Zt8fTTT8f3v//9OHbsWEREbNiwIf7qr/4q/u7v/u6s+4iIGDRoUK/2AwC805h/AIByY/4BAMqN+QcAKDfmHwCAd6aihec7Ozvz6qqqqh7tr66uPu15PXVymP/fb6GvqamJRYsWxdSpU/O+f/e73x3vfve7Y/r06fGJT3wijhw5EhERzz//fKxYsSKmTZvWq34AAAAAAAAAAAAAACidooXnT74lPpvN9mj/0aNHT3teb/v5d/fcc89bgvMnmjJlStx7773xhS98IXn2zW9+s1fh+f379+fdgg8AkEaZTCa5ccP8AwCUA/MPAFBuzD8AQLkx/wAA5ebE+Sctihaer62tzat7enP8yevr6uoK2k/E7/77pFtuueWMez/60Y/G17/+9di7d29ERKxfvz7a29ujvr7+rHrJ5XKGZwCgrJh/AIByY/4BAMqN+QcAKDfmHwCAd6aKYh18cli9o6OjR/tPXF9ZWdnrm+f79+8flZX5vyvw3ve+t1vnVldXx/ve976kzuVysXHjxl71AwAAAAAAAAAAAABA6RQtPD9s2LC8uq2trdt7c7lc3vqTzypUTxdddFG391588cV5dU/+PgAAAAAAAAAAAAAA9K2ihefHjRuXV+/YsaPbe3fv3h3ZbDapx44dW5SeBg0a1O29J6/dv39/QXoCAAAAAAAAAAAAAKD4ihaeHzp0aAwcODCpX3755W7v3bx5c15dqPD8+PHj8+qjR492e+/Ja2tqagrSEwAAAAAAAAAAAAAAxVe08HxExOTJk5PPe/bsiZaWlm7t27BhQ1591VVXFaSfq6++Oq9ua2vr9t6dO3fm1YMHDy5ITwAAAAAAAAAAAAAAFF9Rw/PTp0/Pq59//vlu7Vu2bFnyuaamJqZOnVqQfqZOnRq1tbVJfXJI/3Q2btyYVzc1NRWkJwAAAAAAAAAAAAAAiq+o4flp06ZFVVVVUi9dujSy2exp96xduzaam5uT+vrrr88LvPdGdXV1zJgxI6k3bdoUv/3tb8+4b+vWrbF+/fqkHjp0aFx00UUF6QkAAAAAAAAAAAAAgOIrani+oaEhZs+endQtLS3x+OOPn3J9Z2dnPPTQQ0mdyWRi/vz5p1zf2toal1xySfJn2rRpZ+zpk5/8ZFRWVib1ggULThvoP3bsWCxYsCByuVzy7NZbbz3jewAAAAAAAAAAAAAAOHcUNTwfETFv3ryoq6tL6oULF8bixYujq6srb93evXtj7ty5sWXLluTZjTfeGE1NTQXt513velfMmTMnqdevXx/z58+PXbt2vWXtG2+8EXfeeWesW7cueTZixIj4kz/5k4L2BAAAAAAAAAAAAABAcWVyJ16pXiSrVq2K+fPn5wXmx4wZE9dee23U19fHq6++GitXrowjR44k348fPz6WLFkSAwYMOOW5ra2tMX369KQeMWJErFix4oz9HD16ND72sY/F+vXrk2f9+/ePqVOnxrhx4yIiYtu2bbFmzZo4fPhwsua8886L733vezFx4sTu/cVPob29PUrwYwcA6FOZTCbq6+sjwvwDAJQH8w8AUG7MPwBAuTH/AADl5sT5Jy1KEp6PiHj66adjwYIFeWH0U5kwYUI89thjMXLkyNOuO9vwfMTvBth777031qxZ0631jY2NsWjRorjsssu6tf5M7zY8AwBp5x8PAYByY/4BAMqN+QcAKDfmHwCg3KQxPF9RqhfNmjUrnnrqqZgxY0ZUVVW97ZrGxsa4884748knnzxjcL636uvr45vf/GY8+OCDMX78+NOumzdvXjz77LMFCc4DAAAAAAAAAAAAAFB6Jbt5/kT79u2LDRs2xM6dO6OjoyMaGhpi1KhRccUVV0S/fv1K3U5ERLzyyiuxdevWaGtri+PHj8fgwYPjoosuissuuywqKgr7OwZ+8xQAKAdu3gAAyo35BwAoN+YfAKDcmH8AgHKTxpvnK/vipYMHD47p06f3xatP6dJLL41LL720r9sAAAAAAAAAAAAAAKAICnulOgAAAAAAAAAAAAAAnIOE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEi9yr54aXt7e2zYsCF27twZBw8ejKFDh8bIkSNj0qRJ0a9fv75oCQAAAAAAAAAAAACAFCtpeL65uTkeeeSRWLVqVWSz2bd839jYGHPmzIl58+ZFdXV1KVvLs3jx4nj44Yfznl199dXxne98p486AgAAAAAAAAAAAACgNypK9aJnnnkmbr755vjpT3/6tsH5iIg33ngjHnvssZgzZ060traWqrU8ra2t8fd///d98m4AAAAAAAAAAAAAAIqjJDfPr169Oj73uc9FV1dX8mzMmDFxzTXXRH19fbS0tMTKlSvjyJEjERGxefPmmDdvXixZsiQGDBhQihYTn//85+PQoUMlfScAAAAAAAAAAAAAAMVV9PD8rl274tOf/nQSnM9kMnHffffFbbfdFhUV/+/i+71798bdd98d69ati4iILVu2xAMPPBCPPvposVtMPP300/Hzn/88IiIaGxvjjTfeKNm7AQAAAAAAAAAAAAAonoozL+mdRYsWRUdHR1Lfddddcfvtt+cF5yMihgwZEk888USMGzcuefbcc8/F5s2bi91iRPwuvP/www9HxO8C/n/5l39ZkvcCAAAAAAAAAAAAAFB8RQ3P7969O5YuXZrUo0ePjjvuuOOU62tqauL+++9P6lwuF4sWLSpmi4kvfOELsW/fvoiImDNnTvyH//AfSvJeAAAAAAAAAAAAAACKr6jh+eXLl0c2m03q2bNnR1VV1Wn3TJkyJcaOHZvUq1evjkOHDhWtx4iIf/mXf4mf/OQnERHR2NgYn/nMZ4r6PgAAAAAAAAAAAAAASquo4fkVK1bk1TNnzuzWvhtuuCH53NnZGWvWrCloXyc6dOhQfP7zn0/qv/zLv4zf+73fK9r7AAAAAAAAAAAAAAAovaKG59evX598bmhoiFGjRnVr36RJk/LqF154oaB9negrX/lK7NixIyIi3ve+98VNN91UtHcBAAAAAAAAAAAAANA3ihaeb2triwMHDiT1hAkTur23qakpr966dWvB+jrRpk2b4rvf/W5ERNTU1OTdQA8AAAAAAAAAAAAAQHoULTy/bdu2vPqCCy7o9t6GhoaoqqpK6ubm5oL19e+OHTsW999/fxw/fjwiIubPnx+jR48u+HsAAAAAAAAAAAAAAOh7Rb15/kTDhw/v9t5MJhPDhg075VmF8MQTT8Qrr7wSERHjxo2Lj3/84wV/BwAAAAAAAAAAAAAA54aihecPHTqUV9fW1vZof11dXfL52LFj0dnZWZC+IiK2b98eX/va1yLid0H9Bx98MKqrqwt2PgAAAAAAAAAAAAAA55bKYh18cni+pqamR/tPXt/R0dHjM95OLpeL+++/Pwnj33zzzXHVVVf1+tyeyGQyJX0fAEBfOHHmMf8AAOXA/AMAlBvzDwBQbsw/AEC5SePMU7Tw/Mk3xVdVVfVo/8k3wRfq5vkf/vCHsW7duoiIGDx4cPzX//pfC3JuTwwaNKjk7wQA6EvmHwCg3Jh/AIByY/4BAMqN+QcA4J2polgHn3xLfDab7dH+o0ePnva8s/HGG2/El7/85aS+7777YvDgwb0+FwAAAAAAAAAAAACAc1vRbp6vra3Nq3t6c/zJ6+vq6nrd09/8zd/Em2++GRERV199dfzxH/9xr888G/v3749cLtcn7wYAKJVMJpPcuGH+AQDKgfkHACg35h8AoNyYfwCAcnPi/JMWJQvPd3R09Gj/iesrKyt7ffP88uXLY9myZRERUVVVFQ8++GCvzuuNXC5neAYAyor5BwAoN+YfAKDcmH8AgHJj/gEAeGeqKNbBw4YNy6vb2tq6vTeXy+WtP/mss/Hwww8nn++4444YO3Zsr88EAAAAAAAAAAAAAOCdoWg3z48bNy6v3rFjR7f37t69O7LZbFIXIui+b9++5PPXv/71+PrXv96j/evWrYumpqakvuqqq+Lb3/52r/sCAAAAAAAAAAAAAKD4ihaeHzp0aAwcODAOHDgQEREvv/xyt/du3rw5ry70LfHHjx/v9b6urq5CtQMAAAAAAAAAAAAAQJFVFPPwyZMnJ5/37NkTLS0t3dq3YcOGvPqqq64qaF8AAAAAAAAAAAAAAJSXot08HxExffr0WLVqVVI///zzcccdd5xx37Jly5LPNTU1MXXq1F738uKLL/ZofWtra0yfPj2pr7766vjOd77T6z4AAAAAAAAAAAAAACi9ot48P23atKiqqkrqpUuXRjabPe2etWvXRnNzc1Jff/31UVtbW7QeAQAAAAAAAAAAAABIv6KG5xsaGmL27NlJ3dLSEo8//vgp13d2dsZDDz2U1JlMJubPn3/K9a2trXHJJZckf6ZNm1aYxgEAAAAAAAAAAAAASJWihucjIubNmxd1dXVJvXDhwli8eHF0dXXlrdu7d2/MnTs3tmzZkjy78cYbo6mpqdgtAgAAAAAAAAAAAACQcpXFfsGwYcPi0Ucfjfnz50dXV1fkcrl4+OGH4wc/+EFce+21UV9fH6+++mqsXLkyjhw5kuwbP358/H//3/9X7PYAAAAAAAAAAAAAACgDRQ/PR0S8//3vjy9+8YuxYMGCOHz4cEREbN++PbZv3/626ydMmBCPPfZYDBgwoBTtAQAAAAAAAAAAAACQchWletGsWbPiqaeeihkzZkRVVdXbrmlsbIw777wznnzyyRg5cmSpWgMAAAAAAAAAAAAAIOUyuVwuV+qX7tu3LzZs2BA7d+6Mjo6OaGhoiFGjRsUVV1wR/fr1K3U7Jdfe3h598GMHACipTCYT9fX1EWH+AQDKg/kHACg35h8AoNyYfwCAcnPi/JMWlX3x0sGDB8f06dP74tUAAAAAAAAAAAAAAJShir5uAAAAAAAAAAAAAAAAik14HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPUq++Kl7e3tsWHDhti5c2ccPHgwhg4dGiNHjoxJkyZFv379StbHwYMH4//+3/8b27Zti/b29shms/F7v/d7MXz48HjPe94TQ4YMKVkvAAAAAAAAAAAAAAAUT0nD883NzfHII4/EqlWrIpvNvuX7xsbGmDNnTsybNy+qq6uL0sOvfvWr+Od//uf4xS9+EZs3b46urq5Trr388svjtttui5tuuikymUxR+gEAAAAAAAAAAAAAoPgyuVwuV4oXPfPMM7FgwYI4dOjQGdc2NTXFwoULY+TIkQXt4fbbb49f/OIXPd43ZcqU+PKXvxxDhw4tSB/t7e1Roh87AECfyWQyUV9fHxHmHwCgPJh/AIByY/4BAMqN+QcAKDcnzj9pUZKb51evXh2f+9zn8m55HzNmTFxzzTVRX18fLS0tsXLlyjhy5EhERGzevDnmzZsXS5YsiQEDBhSsj717977l2QUXXBDvec97YujQoVFbWxu7d++OdevWxfbt25M1a9eujY997GPxve99LwYPHlywfgAAAAAAAAAAAAAAKI2ih+d37doVn/70p5PgfCaTifvuuy9uu+22qKioSNbt3bs37r777li3bl1ERGzZsiUeeOCBePTRRwveU0NDQ/zxH/9xfPjDH453vetdb/k+l8vFsmXL4oEHHoj9+/dHRMTWrVvj85//fPz93/99wfsBAAAAAAAAAAAAAKC4Ks68pHcWLVoUHR0dSX3XXXfF7bffnhecj4gYMmRIPPHEEzFu3Ljk2XPPPRebN28uWC9DhgyJz33uc7Fy5cr47Gc/+7bB+YjfBfxnzpwZixcvjvPOOy95vmzZsti0aVPB+gEAAAAAAAAAAAAAoDSKGp7fvXt3LF26NKlHjx4dd9xxxynX19TUxP3335/UuVwuFi1aVLB+vvGNb8Ttt98e1dXV3Vo/ceLEuO222/KeLVu2rGD9AAAAAAAAAAAAAABQGkUNzy9fvjyy2WxSz549O6qqqk67Z8qUKTF27NikXr16dRw6dKgg/VRWVvZ4z0033ZRXu3keAAAAAAAAAAAAAOCdp6jh+RUrVuTVM2fO7Na+G264Ifnc2dkZa9asKWhfPXHhhRfm1Xv27OmjTgAAAAAAAAAAAAAAOFtFDc+vX78++dzQ0BCjRo3q1r5Jkybl1S+88EJB++qJjo6OvPpsbq8HAAAAAAAAAAAAAKBvFS0839bWFgcOHEjqCRMmdHtvU1NTXr1169aC9dVTv/nNb/Lq4cOH91EnAAAAAAAAAAAAAACcraKF57dt25ZXX3DBBd3e29DQEFVVVUnd3NxcsL566sc//nFefe211/ZRJwAAAAAAAAAAAAAAnK2i3jx/op7c2J7JZGLYsGGnPKtUtm/fHj/5yU+Sul+/fvGHf/iHfdILAAAAAAAAAAAAAABnr7JYBx86dCivrq2t7dH+urq65POxY8eis7MzampqCtJbd3R1dcVf//VfRzabTZ7NmjUrRo0a1euzM5lMr88AADjXnTjzmH8AgHJg/gEAyo35BwAoN+YfAKDcpHHmKVl4vqfB95PXd3R0lDQ8/9WvfjVeeOGFpB4yZEh89rOfLcjZgwYNKsg5AADvFOYfAKDcmH8AgHJj/gEAyo35BwDgnamiWAd3dnbm1VVVVT3aX11dfdrziulnP/tZfPWrX03qTCYT/+2//bcYMmRIyXoAAAAAAAAAAAAAAKBwinbz/Mm3xGez2R7tP3r06GnPK5b169fHZz7zmcjlcsmzT33qUzFt2rSCvWP//v155wMApFEmk0lu3DD/AADlwPwDAJQb8w8AUG7MPwBAuTlx/kmLooXna2tr8+qe3hx/8vq6urpe93Qmv/nNb+ITn/hEHDlyJHn20Y9+ND71qU8V9D25XM7wDACUFfMPAFBuzD8AQLkx/wAA5cb8AwDwzlRRrINPDs93dHT0aP+J6ysrK4t+83xLS0t8/OMfjzfffDN5duONN8YDDzxQ1PcCAAAAAAAAAAAAAFB8RQvPDxs2LK9ua2vr9t5cLpe3/uSzCq2trS0+9rGPxRtvvJE8u+666+LLX/5yVFQU7UcEAAAAAAAAAAAAAECJFC0ZPm7cuLx6x44d3d67e/fuyGazST127NiC9XWyvXv3xu23357X35VXXhmPPfZYVFVVFe29AAAAAAAAAAAAAACUTtHC80OHDo2BAwcm9csvv9ztvZs3b86rixWeP3jwYMydOze2bt2aPJs4cWL8j//xP6J///5FeScAAAAAAAAAAAAAAKVXtPB8RMTkyZOTz3v27ImWlpZu7duwYUNefdVVVxW0r4iII0eOxLx58+Kll15Kno0fPz6eeOKJGDBgQMHfBwAAAAAAAAAAAABA3ylqeH769Ol59fPPP9+tfcuWLUs+19TUxNSpUwvaVzabjT//8z+PF198MXk2evTo+Na3vhVDhgwp6LsAAAAAAAAAAAAAAOh7RQ3PT5s2LaqqqpJ66dKlkc1mT7tn7dq10dzcnNTXX3991NbWFqynrq6uuO+++2L16tXJs+HDh8fixYtj2LBhBXsPAAAAAAAAAAAAAADnjqKG5xsaGmL27NlJ3dLSEo8//vgp13d2dsZDDz2U1JlMJubPn3/K9a2trXHJJZckf6ZNm3bGnhYsWBDPPvtsUp9//vmxePHiGDly5Bn3AgAAAAAAAAAAAADwzlTU8HxExLx586Kuri6pFy5cGIsXL46urq68dXv37o25c+fGli1bkmc33nhjNDU1FayXRx99NJYsWZLUgwYNim9961sxduzYgr0DAAAAAAAAAAAAAIBzTyaXy+WK/ZJVq1bF/Pnz8wLzY8aMiWuvvTbq6+vj1VdfjZUrV8aRI0eS78ePHx9LliyJAQMGnPLc1tbWmD59elKPGDEiVqxYccr1l1xySV6dyWSioqLnvz+wefPmHu85UXt7e5Tgxw4A0KcymUzU19dHhPkHACgP5h8AoNyYfwCAcmP+AQDKzYnzT1pUluIl73//++OLX/xiLFiwIA4fPhwREdu3b4/t27e/7foJEybEY489dtrgfCHkcrk4fvx4Ud8BAAAAAAAAAAAAAEDf6/m162dp1qxZ8dRTT8WMGTOiqqrqbdc0NjbGnXfeGU8++WSMHDmyVK0BAAAAAAAAAAAAAJBymVwf/P9B+/btiw0bNsTOnTujo6MjGhoaYtSoUXHFFVdEv379St1OyflvmwCAcuC/rQQAyo35BwAoN+YfAKDcmH8AgHJz4vyTFpV98dLBgwfH9OnT++LVAAAAAAAAAAAAAACUoYq+bgAAAAAAAAAAAAAAAIpNeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUq+yLl7a3t8eGDRti586dcfDgwRg6dGiMHDkyJk2aFP369St5Px0dHfHiiy9GW1tbtLe3x5AhQ2LEiBExefLkqK6uLnk/AAAAAAAAAAAAAAAUVknD883NzfHII4/EqlWrIpvNvuX7xsbGmDNnTsybN68kofVdu3bFo48+GsuWLYtDhw695ftBgwbFhz70objnnntiwIABRe8HAAAAAAAAAAAAAIDiqCjVi5555pm4+eab46c//enbBucjIt5444147LHHYs6cOdHa2lrUfn7+85/Hhz70ofjHf/zHtw3OR0Ts378/vvOd78SsWbPi5ZdfLmo/AAAAAAAAAAAAAAAUTyaXy+WK/ZLVq1fHJz7xiejq6kqejRkzJq655pqor6+PlpaWWLlyZRw5ciT5fvz48bFkyZKi3Pj+0ksvxS233BKHDx9Ong0dOjT+4A/+IBoaGuL111+PlStXxptvvpl839jYGD/84Q9j+PDhvX5/e3t7lODHDgDQpzKZTNTX10eE+QcAKA/mHwCg3Jh/AIByY/4BAMrNifNPWhQ9PL9r166YOXNmdHR0/O6FmUzcd999cdttt0VFxf+7+H7v3r1x9913x7p165JnN910Uzz66KMF7efIkSMxc+bMeP3115Nnf/qnfxqf/vSno7q6Onl28ODBuP/+++O5555Lnk2aNCl+8IMf9LoHwzMAUA784yEAUG7MPwBAuTH/AADlxvwDAJSbNIbnK868pHcWLVqUBOcjIu666664/fbb84LzERFDhgyJJ554IsaNG5c8e+6552Lz5s0F7ee73/1uXnD+wx/+cNx33315wfmIiAEDBsQjjzwSU6ZMSZ5t3LgxfvaznxW0HwAAAAAAAAAAAAAAiq+o4fndu3fH0qVLk3r06NFxxx13nHJ9TU1N3H///Umdy+Vi0aJFBesnm83GE088kdQDBw6M++6775TrKyoq4sEHH8wL+n/ta18rWD8AAAAAAAAAAAAAAJRGUcPzy5cvj2w2m9SzZ8+Oqqqq0+6ZMmVKjB07NqlXr14dhw4dKkg/v/zlL2Pfvn1J/cEPfjAGDRp02j0XXnhhvPe9703ql156KV577bWC9AMAAAAAAAAAAAAAQGkUNTy/YsWKvHrmzJnd2nfDDTcknzs7O2PNmjVF6efE95zOyX0vX768IP0AAAAAAAAAAAAAAFAaRQ3Pr1+/Pvnc0NAQo0aN6ta+SZMm5dUvvPBCQfp58cUXk8/9+vWLyy+/vFv7rrjiiqL0AwAAAAAAAAAAAABAaRQtPN/W1hYHDhxI6gkTJnR7b1NTU169devWXvfT1dUV27dvT+oLL7ww6urqurV37Nix0b9//4L2AwAAAAAAAAAAAABA6RQtPL9t27a8+oILLuj23oaGhqiqqkrq5ubmXvezY8eO6OzsPKt+MplMDB8+PKlfe+21yGazve4JAAAAAAAAAAAAAIDSKOrN8yc6MXx+JplMJoYNG3bKs0rdT0Tk9XPs2LHYs2dPr3sCAAAAAAAAAAAAAKA0Kot18KFDh/Lq2traHu2vq6tLPh87diw6OzujpqbmrPvp6OgoWD9vd15PZDKZs94LAPBOceLMY/4BAMqB+QcAKDfmHwCg3Jh/AIByk8aZp2Th+Z4G309e39HR0avwfKH7Ofm8nhg0aNBZ7wUAeCcy/wAA5cb8AwCUG/MPAFBuzD8AAO9MFcU6uLOzM6+uqqrq0f7q6urTnvdO7wcAAAAAAAAAAAAAgNIpWnj+5Jvas9lsj/YfPXr0tOe90/sBAAAAAAAAAAAAAKB0ihaer62tzat7elP7yevr6urOqX5OPg8AAAAAAAAAAAAAgHNXycLzHR0dPdp/4vrKyspe3/R+cvi+N/283XkAAAAAAAAAAAAAAJy7ihaeHzZsWF7d1tbW7b25XC5v/clnlbqfiIidO3cmnysrK+P888/vdU8AAAAAAAAAAAAAAJRG0cLz48aNy6t37NjR7b27d++ObDab1GPHju11PyNGjIj+/fufVT+5XC4vPD969OioqqrqdU8AAAAAAAAAAAAAAJRG0cLzQ4cOjYEDByb1yy+/3O29mzdvzqsLEZ6vqKiIMWPGJHVLS0t0dHR0a+/WrVujs7OzoP0AAAAAAAAAAAAAAFA6RQvPR0RMnjw5+bxnz55oaWnp1r4NGzbk1VdddVXB+zl+/Hhs2rSpW/s2btxYlH4AAAAAAAAAAAAAACiNoobnp0+fnlc///zz3dq3bNmy5HNNTU1MnTq1T/s5ed3J5wAAAAAAAAAAAAAAcG4ranh+2rRpUVVVldRLly6NbDZ72j1r166N5ubmpL7++uujtra2IP1cffXVMWTIkKR+9tln48033zztnldffTV+8YtfJPXEiRNj1KhRBekHAAAAAAAAAAAAAIDSKGp4vqGhIWbPnp3ULS0t8fjjj59yfWdnZzz00ENJnclkYv78+adc39raGpdccknyZ9q0aaftp6qqKubOnZvUBw4ciIcffviU67u6uuLzn/98dHV1Jc8++clPnvYdAAAAAAAAAAAAAACce4oano+ImDdvXtTV1SX1woULY/HixXmB9IiIvXv3xty5c2PLli3JsxtvvDGampoK2s8tt9wSv//7v5/UP/rRj+JLX/pSHD16NG/dwYMH4zOf+UysXbs2eTZp0qSYMWNGQfsBAAAAAAAAAAAAAKD4MrlcLlfsl6xatSrmz5+fF5gfM2ZMXHvttVFfXx+vvvpqrFy5Mo4cOZJ8P378+FiyZEkMGDDglOe2trbG9OnTk3rEiBGxYsWKM/bz0ksvxS233BKHDx9Ong0dOjSuv/76OP/882Pnzp2xYsWKePPNN5PvGxsb44c//GEMHz68239vAAAAAAAAAAAAAADODSUJz0dEPP3007FgwYK8wPqpTJgwIR577LEYOXLkadedbXg+IuJf/uVf4rOf/Wy0t7efce3IkSNj4cKFBb8FHwAAAAAAAAAAAACA0qgo1YtmzZoVTz31VMyYMSOqqqredk1jY2Pceeed8eSTT54xON9b1113XfzkJz+JWbNmxXnnnfe2awYNGhS33nprPPPMM4LzAAAAAAAAAAAAAADvYCW7ef5E+/btiw0bNsTOnTujo6MjGhoaYtSoUXHFFVdEv379St1OdHR0xIsvvhivv/567N+/P4YMGRIjRoyIK6+8Mqqrq0veDwAAAAAAAAAAAAAAhdUn4XkAAAAAAAAAAAAAACilir5uAAAAAAAAAAAAAAAAik14HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPUq+7qBc0FHR0e8+OKL0dbWFu3t7TFkyJAYMWJETJ48Oaqrq/u6PQAAAAAAAAAAAAAAeqlk4fmOjo7YvHlzbNq0KTZt2hS/+tWvYseOHcn3I0aMiBUrVpSqnYiI2LVrVzz66KOxbNmyOHTo0Fu+HzRoUHzoQx+Ke+65JwYMGFDS3gAAAAAAAAAAAAAAKJxMLpfLFfMFixcvjqeeeiq2bNkSXV1dp1xX6vD8z3/+8/jsZz8b+/btO+PaUaNGxcKFC2PChAkl6AwAAAAAAAAAAAAAgEIr+s3zL7zwQvz2t78t9mt65KWXXopPfepTcfjw4eTZ0KFD4w/+4A+ioaEhXn/99Vi5cmW8+eabERHx2muvxZ/92Z/FD3/4wxg+fHhftQ0AAAAAAAAAAAAAwFkqenj+7dTW1sbEiRPjpZdeikOHDpX03UeOHIk777wzLzj/p3/6p/HpT386qqurk2cHDx6M+++/P5577rmIiHjjjTfinnvuiR/84Acl7RcAAAAAAAAAAAAAgN4reni+pqYmLr/88rjsssvi3e9+d1x22WUxbty4qKioiGnTppU8PP/d7343Xn/99aT+8Ic/HPfdd99b1g0YMCAeeeSR2LdvX6xduzYiIjZu3Bg/+9nPYsaMGSXrFwAAAAAAAAAAAACA3svkcrlcX7182rRpsWPHjoiIGDFiRKxYsaKo78tms3HdddfFvn37IiJi4MCBsXz58hg0aNAp97z66qsxc+bM6OrqioiIiRMnxlNPPVXUPgEAAAAAAAAAAAAAKKyKvm6glH75y18mwfmIiA9+8IOnDc5HRFx44YXx3ve+N6lfeumleO2114rWIwAAAAAAAAAAAAAAhVdW4fmTb7a/4YYburVv5syZefXy5csL1hMAAAAAAAAAAAAAAMVXVuH5F198Mfncr1+/uPzyy7u174orrsirX3jhhYL2BQAAAAAAAAAAAABAcZVNeL6rqyu2b9+e1BdeeGHU1dV1a+/YsWOjf//+Sb1169ZCtwcAAAAAAAAAAAAAQBGVTXh+x44d0dnZmdQXXHBBt/dmMpkYPnx4Ur/22muRzWYL2h8AAAAAAAAAAAAAAMVTNuH5tra2vPrEMHx3DBs2LPl87Nix2LNnT0H6AgAAAAAAAAAAAACg+MomPN/R0ZFX19bW9mh/XV3dac8DAAAAAAAAAAAAAODcVTbh+UOHDuXVNTU1Pdp/8vqTzwMAAAAAAAAAAAAA4NxVNuH5zs7OvLqqqqpH+6urq097HgAAAAAAAAAAAAAA567Kvm6gVE6+OT6bzfZo/9GjR097Xk/s378/crncWe8HAHgnyGQyMWjQoIgw/wAA5cH8AwCUG/MPAFBuzD8AQLk5cf5Ji7IJz9fW1ubVPb05/uT1J5/XE7lczvAMAJQV8w8AUG7MPwBAuTH/AADlxvwDAPDOVNHXDZRKXV1dXt3R0dGj/SevP/k8AAAAAAAAAAAAAADOXWUTnh82bFhe3dbW1qP9O3fuTD5XVlbG+eefX5C+AAAAAAAAAAAAAAAovrIJz48YMSL69++f1Dt27Oj23lwulxeeHz16dFRVVRW0PwAAAAAAAAAAAAAAiqdswvMVFRUxZsyYpG5paYmOjo5u7d26dWt0dnYm9dixYwvdHgAAAAAAAAAAAAAARVQ24fmIiMmTJyefjx8/Hps2berWvo0bN+bVV111VUH7AgAAAAAAAAAAAACguMoqPD99+vS8+vnnn+/WvpPXnXwOAAAAAAAAAAAAAADntrIKz1999dUxZMiQpH722WfjzTffPO2eV199NX7xi18k9cSJE2PUqFFF6xEAAAAAAAAAAAAAgMJ7R4fnW1tb45JLLkn+TJs27bTrq6qqYu7cuUl94MCBePjhh0+5vqurKz7/+c9HV1dX8uyTn/xk7xsHAAAAAAAAAAAAAKCk3tHh+bNxyy23xO///u8n9Y9+9KP40pe+FEePHs1bd/DgwfjMZz4Ta9euTZ5NmjQpZsyYUbJeAQAAAAAAAAAAAAAojMpiv2DHjh3xh3/4h2/73fHjx/PWNTU1ve26//k//2dcffXVBemnf//+8dWvfjVuueWWOHz4cEREfOtb34p/+qd/iuuvvz7OP//82LlzZ6xYsSLefPPNZF9jY2N85StfKUgPAAAAAAAAAAAAAACUVtHD87lcLi8kfzqnWpfL5QrZUkycODEWLlwYn/3sZ6O9vT0iInbt2hVLly592/UjR46MhQsXxvDhwwvaBwAAAAAAAAAAAAAApVHR1w30leuuuy5+8pOfxKxZs+K888572zWDBg2KW2+9NZ555plT3ooPAAAAAAAAAAAAAMC5L5Mr9LXu70AdHR3x4osvxuuvvx779++PIUOGxIgRI+LKK6+M6urqgr+vvb294LfpAwCcazKZTNTX10eE+QcAKA/mHwCg3Jh/AIByY/4BAMrNifNPWlT2dQPngrq6urj++uv7ug0AAAAAAAAAAAAAAIqkoq8bAAAAAAAAAAAAAACAYhOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPUq++Kl7e3tsWHDhti5c2ccPHgwhg4dGiNHjoxJkyZFv379StpLV1dXbNmyJV5++eXYt29fHD58OOrq6uL888+PpqamGDNmTGQymZL2BAAAAAAAAAAAAABAYZU0PN/c3ByPPPJIrFq1KrLZ7Fu+b2xsjDlz5sS8efOiurq6qL0cOHAgnnjiifjRj34Ub7zxxinXjRgxIj7ykY/EbbfdFjU1NUXtCQAAAAAAAAAAAACA4sjkcrlcKV70zDPPxIIFC+LQoUNnXNvU1BQLFy6MkSNHFqWXjRs3xt133x1tbW3d3vOud70rvvrVr8a4ceN6/f729vYo0Y8dAKDPZDKZqK+vjwjzDwBQHsw/AEC5Mf8AAOXG/AMAlJsT55+0KEl4fvXq1fGJT3wiurq6kmdjxoyJa665Jurr66OlpSVWrlwZR44cSb4fP358LFmyJAYMGFDQXl555ZW45ZZb4uDBg8mzTCYTkydPjokTJ8bAgQNj//798etf/zo2btyYt7exsTGefPLJuOCCC3rVg+EZACgH/vEQACg35h8AoNyYfwCAcmP+AQDKjfD8Wdi1a1fMnDkzOjo6fvfCTCbuu+++uO2226KioiJZt3fv3rj77rtj3bp1ybObbropHn300YL1ksvlYvbs2bFp06bk2cUXXxyPPPJIXHzxxW9Zv3nz5rj33nujubk5eTZjxoz46le/2qs+DM8AQDnwj4cAQLkx/wAA5cb8AwCUG/MPAFBu0hierzjzkt5ZtGhREpyPiLjrrrvi9ttvzwvOR0QMGTIknnjiiRg3blzy7LnnnovNmzcXrJdNmzblBecHDRoU3/rWt942OB8R0dTUFN/+9rdj4MCBybPly5dHW1tbwXoCAAAAAAAAAAAAAKD4ihqe3717dyxdujSpR48eHXfccccp19fU1MT999+f1LlcLhYtWlSwftauXZtXz549OxobG0+7Z9iwYfGf//N/zuvpl7/8ZcF6AgAAAAAAAAAAAACg+Ioanl++fHlks9mknj17dlRVVZ12z5QpU2Ls2LFJvXr16jh06FBB+jn5xvj3vOc93dp3xRVX5NW7du0qSD8AAAAAAAAAAAAAAJRGUcPzK1asyKtnzpzZrX033HBD8rmzszPWrFlTkH66urry6v79+3dr33nnnZdXZzKZgvQDAAAAAAAAAAAAAEBpFDU8v379+uRzQ0NDjBo1qlv7Jk2alFe/8MILBeln5MiRefXrr7/erX07duzIqy+88MKC9AMAAAAAAAAAAAAAQGkULTzf1tYWBw4cSOoJEyZ0e29TU1NevXXr1oL0dN111+XV/+t//a9u7XvuueeSz7W1tXHNNdcUpB8AAAAAAAAAAAAAAEqjaOH5bdu25dUXXHBBt/c2NDREVVVVUjc3Nxekp0svvTTe//73J/WaNWvi+9///mn3fPvb347//b//d1LffvvtMXDgwIL0AwAAAAAAAAAAAABAaRT15vkTDR8+vNt7M5lMDBs27JRn9cbf/M3fxKhRo5J6wYIFce+998Yvf/nLOHjwYORyuThw4ECsXbs27rrrrvjCF76QrP3ABz4Q8+fPL1gvAAAAAAAAAAAAAACURmWxDj506FBeXVtb26P9dXV1yedjx45FZ2dn1NTU9LqvoUOHxpIlS2LBggXxz//8zxER8eyzz8azzz57yj0DBgyIuXPnxh133BH9+vXrdQ8AAAAAAAAAAAAAAJRWycLzPQ2+n7y+o6OjIOH5iIjzzz8/Fi5cGKtXr44HHnggdu7cecq1o0ePjgceeCCuu+66grw74nc36wMApN2JM4/5BwAoB+YfAKDcmH8AgHJj/gEAyk0aZ56ihec7Ozvz6qqqqh7tr66uPu15vdHW1hZf/OIX4/nnn49cLnfatS0tLTF37tyYNGlSPPTQQzF+/Phev3/QoEG9PgMA4J3E/AMAlBvzDwBQbsw/AEC5Mf8AALwzFS08f/It8dlstkf7jx49etrzztYrr7wSH/vYx2Lfvn0R8bvfiPjgBz8YN998c1x66aUxcODAOHDgQGzevDn+8R//MZ599tnI5XKxcePG+E//6T/FN77xjbjqqqsK0gsAAAAAAAAAAAAAAKVRtPB8bW1tXt3Tm+NPXl9XV9frnvbv3x9/9md/lgTnq6qqYuHChfGBD3wgb92QIUPife97X7zvfe+Lm266Kf78z/88stlsHD58OD71qU/FP/3TP0VjY2Ov+jjTjfcAAO90mUwmuXHD/AMAlAPzDwBQbsw/AEC5Mf8AAOXmxPknLUoWnu/o6OjR/hPXV1ZWFuTm+a9//euxa9eupL7nnnveEpw/2bRp0+Luu++O//7f/3tERLS3t8eiRYvigQceOOs+crmc4RkAKCvmHwCg3Jh/AIByY/4BAMqN+QcA4J2polgHDxs2LK9ua2vr9t5cLpe3/uSzzkYul4unn346qWtra+O//Jf/0q29t956a94vA/zkJz+Jrq6uXvcEAAAAAAAAAAAAAEBpFC08P27cuLx6x44d3d67e/fuyGazST127Nhe99PS0hJ79+5N6ssvvzz69+/frb39+/ePyy67LKnffPPNePXVV3vdEwAAAAAAAAAAAAAApVG08PzQoUNj4MCBSf3yyy93e+/mzZvz6kKE5/fs2ZNXNzQ09Gh/Y2NjXr1v375e9wQAAAAAAAAAAAAAQGkULTwfETF58uTk8549e6KlpaVb+zZs2JBXX3XVVb3upaamJq/u7Ozs0f7Dhw/n1bW1tb3uCQAAAAAAAAAAAACA0ihqeH769Ol59fPPP9+tfcuWLUs+19TUxNSpU3vdy/nnn59Xb926tUf7T14/ZMiQXvcEAAAAAAAAAAAAAEBpFDU8P23atKiqqkrqpUuXRjabPe2etWvXRnNzc1Jff/31Bbnlffjw4TF06NCk3rZtW7zyyivd2vurX/0qtm/fntQjRozIOwsAAAAAAAAAAAAAgHNbUcPzDQ0NMXv27KRuaWmJxx9//JTrOzs746GHHkrqTCYT8+fPP+X61tbWuOSSS5I/06ZNO20/H/jAB/LqBQsWxNGjR0+7p7OzMx588MG8Z2d6DwAAAAAAAAAAAAAA55aihucjIubNmxd1dXVJvXDhwli8eHF0dXXlrdu7d2/MnTs3tmzZkjy78cYbo6mpqWC93HHHHXk34W/cuDE+/vGPR0tLy9uu37ZtW9x2223xq1/9KnlWU1MTc+fOLVhPAAAAAAAAAAAAAAAUXyaXy+WK/ZJVq1bF/Pnz8wLzY8aMiWuvvTbq6+vj1VdfjZUrV8aRI0eS78ePHx9LliyJAQMGnPLc1tbWmD59elKPGDEiVqxYcdpelixZEg888EDes379+sXkyZOjqakpBgwYEAcOHIiXXnopNmzY8JaQ/5e+9KWYNWtWd/7ap9Te3h4l+LEDAPSpTCYT9fX1EWH+AQDKg/kHACg35h8AoNyYfwCAcnPi/JMWlaV4yfvf//744he/GAsWLIjDhw9HRMT27dtj+/btb7t+woQJ8dhjj502OH+25syZExERX/jCF5Kw/vHjx2PdunWxbt26U+6rra2N+++/v9fBeQAAAAAAAAAAAAAASq+iVC+aNWtWPPXUUzFjxoyoqqp62zWNjY1x5513xpNPPhkjR44sWi9z5syJH//4x/HRj3406urqTrt2wIABccstt8SPf/zjuPnmm4vWEwAAAAAAAAAAAAAAxZPJ9cH/H7Rv377YsGFD7Ny5Mzo6OqKhoSFGjRoVV1xxRfTr16+kvRw/fjx+85vfxG9/+9tob2+PQ4cORW1tbdTX18cll1wSF198ccF78t82AQDlwH9bCQCUG/MPAFBuzD8AQLkx/wAA5ebE+SctKvvipYMHD47p06f3xavfol+/ftHU1BRNTU193QoAAAAAAAAAAAAAAEVS0dcNAAAAAAAAAAAAAABAsQnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApF5lX7y0vb09NmzYEDt37oyDBw/G0KFDY+TIkTFp0qTo169fX7QUERF79uyJ//N//k+89tpr0dHREdXV1TFkyJAYPXp0TJgwIerq6vqsNwAAAAAAAAAAAAAAzl5Jw/PNzc3xyCOPxKpVqyKbzb7l+8bGxpgzZ07MmzcvqqurS9bX8uXLY/HixfHiiy9GLpd72zUVFRUxceLEuPXWW+M//sf/WLLeAAAAAAAAAAAAAADovYpSveiZZ56Jm2++OX7605++bXA+IuKNN96Ixx57LObMmROtra1F72nfvn0xb968+OQnPxkvvPDCKYPzERFdXV3xq1/9KlatWlX0vgAAAAAAAAAAAAAAKKyS3Dy/evXq+NznPhddXV3JszFjxsQ111wT9fX10dLSEitXrowjR45ERMTmzZtj3rx5sWTJkhgwYEBRempra4vbbrstmpub855ffPHFcfnll0dDQ0McP348du3aFb/+9a9j69atRekDAAAAAAAAAAAAAIDiK3p4fteuXfHpT386Cc5nMpm477774rbbbouKiv938f3evXvj7rvvjnXr1kVExJYtW+KBBx6IRx99tOA9dXZ2xh133JEXnL/yyivjgQceiEsuueRt97z22mvxzDPPRHt7e8H7AQAAAAAAAAAAAACguCrOvKR3Fi1aFB0dHUl91113xe23354XnI+IGDJkSDzxxBMxbty45Nlzzz0XmzdvLnhPX/va1+KVV15J6g996EPx3e9+95TB+YiIUaNGxac+9an467/+64L3AwAAAAAAAAAAAABAcRU1PL979+5YunRpUo8ePTruuOOOU66vqamJ+++/P6lzuVwsWrSooD1t2bIlvvnNbyb1xIkT44tf/GJkMpmCvgcAAAAAAAAAAAAAgHNHUcPzy5cvj2w2m9SzZ8+Oqqqq0+6ZMmVKjB07NqlXr14dhw4dKlhPixcvzuvpr/7qr6KysrJg5wMAAAAAAAAAAAAAcO4panh+xYoVefXMmTO7te+GG25IPnd2dsaaNWsK0k9HR0c899xzST1hwoSYPHlyQc4GAAAAAAAAAAAAAODcVdTw/Pr165PPDQ0NMWrUqG7tmzRpUl79wgsvFKSflStX5t1if9NNNxXkXAAAAAAAAAAAAAAAzm1FC8+3tbXFgQMHknrChAnd3tvU1JRXb926tSA9/eu//mtefeWVVxbkXAAAAAAAAAAAAAAAzm2VxTp427ZtefUFF1zQ7b0NDQ1RVVUV2Ww2IiKam5sL0tOvf/3r5HNlZWUS6G9ra4tnnnkmVqxYEa2trXHw4MEYPHhwjBw5MqZMmRJ/9Ed/1O1b8wEAAAAAAAAAAAAAOPcULTzf1taWVw8fPrzbezOZTAwbNixaW1vf9qyzdeIN9o2NjdG/f//4h3/4h/jbv/3bOHToUN7aw4cPx7/927/FunXr4mtf+1p85CMfib/4i7+I6urqgvQCAAAAAAAAAAAAAEDpFC08f3IYvba2tkf76+rqks/Hjh2Lzs7OqKmpOet+urq64sCBA0nd2NgYX/nKV2LRokVn3JvNZuM73/lOvPTSS/GNb3wjBgwYcNZ9RPzulwMAANLuxJnH/AMAlAPzDwBQbsw/AEC5Mf8AAOUmjTNPycLzPQ2+n7y+o6OjV+H5AwcORC6XS+rm5ubYtGlTRERUVlbGnDlzYtasWTFu3LjIZDKxbdu2ePrpp+P73/9+HDt2LCIiNmzYEH/1V38Vf/d3f3fWfUREDBo0qFf7AQDeacw/AEC5Mf8AAOXG/AMAlBvzDwDAO1PRwvOdnZ15dVVVVY/2V1dXn/a8njo5zP/vt9DX1NTEokWLYurUqXnfv/vd7453v/vdMX369PjEJz4RR44ciYiI559/PlasWBHTpk3rVT8AAAAAAAAAAAAAAJRO0cLzJ98Sn81me7T/6NGjpz2vt/38u3vuuectwfkTTZkyJe699974whe+kDz75je/2avw/P79+/NuwQcASKNMJpPcuGH+AQDKgfkHACg35h8AoNyYfwCAcnPi/JMWRQvP19bW5tU9vTn+5PV1dXUF7Sfid/990i233HLGvR/96Efj61//euzduzciItavXx/t7e1RX19/Vr3kcjnDMwBQVsw/AEC5Mf8AAOXG/AMAlBvzDwDAO1NFsQ4+Oaze0dHRo/0nrq+srOz1zfP9+/ePysr83xV473vf261zq6ur433ve19S53K52LhxY6/6AQAAAAAAAAAAAACgdIoWnh82bFhe3dbW1u29uVwub/3JZxWqp4suuqjbey+++OK8uid/HwAAAAAAAAAAAAAA+lbRwvPjxo3Lq3fs2NHtvbt3745sNpvUY8eOLUpPgwYN6vbek9fu37+/ID0BAAAAAAAAAAAAAFB8RQvPDx06NAYOHJjUL7/8crf3bt68Oa8uVHh+/PjxefXRo0e7vffktTU1NQXpCQAAAAAAAAAAAACA4itaeD4iYvLkycnnPXv2REtLS7f2bdiwIa++6qqrCtLP1VdfnVe3tbV1e+/OnTvz6sGDBxekJwAAAAAAAAAAAAAAiq+o4fnp06fn1c8//3y39i1btiz5XFNTE1OnTi1IP1OnTo3a2tqkPjmkfzobN27Mq5uamgrSEwAAAAAAAAAAAAAAxVfU8Py0adOiqqoqqZcuXRrZbPa0e9auXRvNzc1Jff311+cF3nujuro6ZsyYkdSbNm2K3/72t2fct3Xr1li/fn1SDx06NC666KKC9AQAAAAAAAAAAAAAQPEVNTzf0NAQs2fPTuqWlpZ4/PHHT7m+s7MzHnrooaTOZDIxf/78U65vbW2NSy65JPkzbdq0M/b0yU9+MiorK5N6wYIFpw30Hzt2LBYsWBC5XC55duutt57xPQAAAAAAAAAAAAAAnDuKGp6PiJg3b17U1dUl9cKFC2Px4sXR1dWVt27v3r0xd+7c2LJlS/LsxhtvjKampoL28653vSvmzJmT1OvXr4/58+fHrl273rL2jTfeiDvvvDPWrVuXPBsxYkT8yZ/8SUF7AgAAAAAAAAAAAACguDK5E69UL5JVq1bF/Pnz8wLzY8aMiWuvvTbq6+vj1VdfjZUrV8aRI0eS78ePHx9LliyJAQMGnPLc1tbWmD59elKPGDEiVqxYccZ+jh49Gh/72Mdi/fr1ybP+/fvH1KlTY9y4cRERsW3btlizZk0cPnw4WXPeeefF9773vZg4cWL3/uKn0N7eHiX4sQMA9KlMJhP19fURYf4BAMqD+QcAKDfmHwCg3Jh/AIByc+L8kxYlCc9HRDz99NOxYMGCvDD6qUyYMCEee+yxGDly5GnXnW14PuJ3A+y9994ba9as6db6xsbGWLRoUVx22WXdWn+mdxueAYC084+HAEC5Mf8AAOXG/AMAlBvzDwBQbtIYnq8o1YtmzZoVTz31VMyYMSOqqqredk1jY2Pceeed8eSTT54xON9b9fX18c1vfjMefPDBGD9+/GnXzZs3L5599tmCBOcBAAAAAAAAAAAAACi9kt08f6J9+/bFhg0bYufOndHR0RENDQ0xatSouOKKK6Jfv36lbiciIl555ZXYunVrtLW1xfHjx2Pw4MFx0UUXxWWXXRYVFYX9HQO/eQoAlAM3bwAA5cb8AwCUG/MPAFBuzD8AQLlJ483zlX3x0sGDB8f06dP74tWndOmll8all17a120AAAAAAAAAAADA/8/evQdZWZ95An9O0xfshqFpuxtGLhIgGproBvEa45gAU1KayTJmF5J1LeKEgRB11MRdMjWDkh03MdnSygYMWWPCpMzsBEkciaMrk3CriWGDArsY0WS52cJKc22EBpqGPvtHat7loGA3fc5pfM/nU0XVed7zuzz0X09RX94GAAogv69UBwAAAAAAAAAAAACA85DwPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKlX3huXtra2xvr162PXrl1x+PDhaGxsjKFDh8a4ceOiT58+vdESAAAAAAAAAAAAAAApVtTw/LZt2+KRRx6JVatWRUdHxzu+b2hoiGnTpsWsWbOisrKymK3lWLRoUTz88MM5z66++up48skne6kjAAAAAAAAAAAAAAB6oqxYFy1dujRuvfXW+PnPf/6uwfmIiD179sSCBQti2rRpsWPHjmK1lmPHjh3x7W9/u1fuBgAAAAAAAAAAAACgMIry5vnVq1fHV77ylejs7EyejRgxIq655pqora2N5ubmWLlyZRw7diwiIjZt2hSzZs2KxYsXR79+/YrRYuLBBx+MI0eOFPVOAAAAAAAAAAAAAAAKq+Dh+d27d8d9992XBOczmUzMmTMnpk+fHmVl///F9/v374977rkn1q5dGxERmzdvjgceeCAeffTRQreYeOaZZ+KXv/xlREQ0NDTEnj17inY3AAAAAAAAAAAAAACFU/beS3pm4cKF0dbWltR333133HHHHTnB+YiIurq6eOKJJ2LUqFHJs+effz42bdpU6BYj4vfh/Ycffjgifh/w/8u//Mui3AsAAAAAAAAAAAAAQOEVNDy/d+/eWLJkSVIPHz48Zs6cecb1VVVVMXfu3KTOZrOxcOHCQraY+NrXvhYHDhyIiIhp06bFv/pX/6oo9wIAAAAAAAAAAAAAUHgFDc8vX748Ojo6knrq1KlRUVFx1j3XXXddjBw5MqlXr14dR44cKViPERH//M//HM8++2xERDQ0NMSXv/zlgt4HAAAAAAAAAAAAAEBxFTQ8v2LFipx68uTJXdp30003JZ/b29vjxRdfzGtfpzpy5Eg8+OCDSf2Xf/mX8Qd/8AcFuw8AAAAAAAAAAAAAgOIraHh+3bp1yef6+voYNmxYl/aNGzcup37ppZfy2tepvvWtb8XOnTsjIuJjH/tY3HLLLQW7CwAAAAAAAAAAAACA3lGw8HxLS0scOnQoqceMGdPlvU1NTTn1li1b8tbXqTZu3Bg/+tGPIiKiqqoq5w30AAAAAAAAAAAAAACkR8HC81u3bs2pL7rooi7vra+vj4qKiqTetm1b3vr6FydOnIi5c+fGyZMnIyJi9uzZMXz48LzfAwAAAAAAAAAAAABA7yvom+dPNXjw4C7vzWQyMWjQoDOelQ9PPPFEvP766xERMWrUqPj85z+f9zsAAAAAAAAAAAAAADg/lBfq4CNHjuTU1dXV3dpfU1OTfD5x4kS0t7dHVVVVXnrbvn17fOc734mI3wf1v/rVr0ZlZWVezu6KTCZTtLsAAHrLqTOP+QcAKAXmHwCg1Jh/AIBSY/4BAEpNGmeeooXnuxt8P319W1tbXsLz2Ww25s6dG+3t7RERceutt8ZVV13V43O7Y8CAAUW9DwCgt5l/AIBSY/4BAEqN+QcAKDXmHwCA96eyQh38L+H0f1FRUdGt/ae/Cf70887VT37yk1i7dm1ERAwcODD+w3/4D3k5FwAAAAAAAAAAAACA81fB3jx/+lviOzo6urX/+PHjZz3vXOzZsye++c1vJvWcOXNi4MCBPT63uw4ePBjZbLbo9wIAFFMmk0neuGH+AQBKgfkHACg15h8AoNSYfwCAUnPq/JMWBQvPV1dX59TdfXP86etramp63NPf/M3fxNtvvx0REVdffXX86Z/+aY/PPBfZbNbwDACUFPMPAFBqzD8AQKkx/wAApcb8AwDw/lRWqINPD8+3tbV1a/+p68vLy3v85vnly5fHsmXLIiKioqIivvrVr/boPAAAAAAAAAAAAAAA3j8KFp4fNGhQTt3S0tLlvdlsNmf96Wedi4cffjj5PHPmzBg5cmSPzwQAAAAAAAAAAAAA4P2hvFAHjxo1KqfeuXNnl/fu3bs3Ojo6kjofQfcDBw4kn7/73e/Gd7/73W7tX7t2bTQ1NSX1VVddFT/84Q973BcAAAAAAAAAAAAAAIVXsPB8Y2Nj9O/fPw4dOhQREa+99lqX927atCmnzvdb4k+ePNnjfZ2dnflqBwAAAAAAAAAAAACAAisr5OHjx49PPu/bty+am5u7tG/9+vU59VVXXZXXvgAAAAAAAAAAAAAAKC0Fe/N8RMTEiRNj1apVSf3CCy/EzJkz33PfsmXLks9VVVVx/fXX97iXl19+uVvrd+zYERMnTkzqq6++Op588ske9wEAAAAAAAAAAAAAQPEV9M3zEyZMiIqKiqResmRJdHR0nHXPmjVrYtu2bUl94403RnV1dcF6BAAAAAAAAAAAAAAg/Qoanq+vr4+pU6cmdXNzczz++ONnXN/e3h4PPfRQUmcymZg9e/YZ1+/YsSMuvfTS5M+ECRPy0zgAAAAAAAAAAAAAAKlS0PB8RMSsWbOipqYmqefPnx+LFi2Kzs7OnHX79++PGTNmxObNm5NnN998czQ1NRW6RQAAAAAAAAAAAAAAUq680BcMGjQoHn300Zg9e3Z0dnZGNpuNhx9+OH784x/HtddeG7W1tfHGG2/EypUr49ixY8m+0aNHx3/6T/+p0O0BAAAAAAAAAAAAAFACCh6ej4j4+Mc/Hl//+tdj3rx5cfTo0YiI2L59e2zfvv1d148ZMyYWLFgQ/fr1K0Z7AAAAAAAAAAAAAACkXFmxLpoyZUo8/fTTMWnSpKioqHjXNQ0NDXHnnXfGU089FUOHDi1WawAAAAAAAAAAAAAApFwmm81mi33pgQMHYv369bFr165oa2uL+vr6GDZsWFxxxRXRp0+fYrdTdK2trdELP3YAgKLKZDJRW1sbEeYfAKA0mH8AgFJj/gEASo35BwAoNafOP2lR3huXDhw4MCZOnNgbVwMAAAAAAAAAAAAAUILKersBAAAAAAAAAAAAAAAoNOF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1CvvjUtbW1tj/fr1sWvXrjh8+HA0NjbG0KFDY9y4cdGnT5+i9XH48OH4P//n/8TWrVujtbU1Ojo64g/+4A9i8ODB8ZGPfCTq6uqK1gsAAAAAAAAAAAAAAIVT1PD8tm3b4pFHHolVq1ZFR0fHO75vaGiIadOmxaxZs6KysrIgPbzyyivxT//0T/GrX/0qNm3aFJ2dnWdce/nll8f06dPjlltuiUwmU5B+AAAAAAAAAAAAAAAovEw2m80W46KlS5fGvHnz4siRI++5tqmpKebPnx9Dhw7Naw933HFH/OpXv+r2vuuuuy6++c1vRmNjY176aG1tjSL92AEAek0mk4na2tqIMP8AAKXB/AMAlBrzDwBQasw/AECpOXX+SYuivHl+9erV8ZWvfCXnLe8jRoyIa665Jmpra6O5uTlWrlwZx44di4iITZs2xaxZs2Lx4sXRr1+/vPWxf//+dzy76KKL4iMf+Ug0NjZGdXV17N27N9auXRvbt29P1qxZsyY+97nPxd/93d/FwIED89YPAAAAAAAAAAAAAADFUfDw/O7du+O+++5LgvOZTCbmzJkT06dPj7KysmTd/v3745577om1a9dGRMTmzZvjgQceiEcffTTvPdXX18ef/umfxqc//en4wAc+8I7vs9lsLFu2LB544IE4ePBgRERs2bIlHnzwwfj2t7+d934AAAAAAAAAAAAAACissvde0jMLFy6Mtra2pL777rvjjjvuyAnOR0TU1dXFE088EaNGjUqePf/887Fp06a89VJXVxdf+cpXYuXKlXH//fe/a3A+4vcB/8mTJ8eiRYviggsuSJ4vW7YsNm7cmLd+AAAAAAAAAAAAAAAojoKG5/fu3RtLlixJ6uHDh8fMmTPPuL6qqirmzp2b1NlsNhYuXJi3fr73ve/FHXfcEZWVlV1aP3bs2Jg+fXrOs2XLluWtHwAAAAAAAAAAAAAAiqOg4fnly5dHR0dHUk+dOjUqKirOuue6666LkSNHJvXq1avjyJEjeemnvLy823tuueWWnNqb5wEAAAAAAAAAAAAA3n8KGp5fsWJFTj158uQu7bvpppuSz+3t7fHiiy/mta/uuPjii3Pqffv29VInAAAAAAAAAAAAAACcq4KG59etW5d8rq+vj2HDhnVp37hx43Lql156Ka99dUdbW1tOfS5vrwcAAAAAAAAAAAAAoHcVLDzf0tIShw4dSuoxY8Z0eW9TU1NOvWXLlrz11V2//e1vc+rBgwf3UicAAAAAAAAAAAAAAJyrgoXnt27dmlNfdNFFXd5bX18fFRUVSb1t27a89dVdP/vZz3Lqa6+9tpc6AQAAAAAAAAAAAADgXBX0zfOn6s4b2zOZTAwaNOiMZxXL9u3b49lnn03qPn36xB//8R/3Si8AAAAAAAAAAAAAAJy78kIdfOTIkZy6urq6W/tramqSzydOnIj29vaoqqrKS29d0dnZGX/9138dHR0dybMpU6bEsGHDenx2JpPp8RkAAOe7U2ce8w8AUArMPwBAqTH/AAClxvwDAJSaNM48RQvPdzf4fvr6tra2oobnH3vssXjppZeSuq6uLu6///68nD1gwIC8nAMA8H5h/gEASo35BwAoNeYfAKDUmH8AAN6fygp1cHt7e05dUVHRrf2VlZVnPa+QfvGLX8Rjjz2W1JlMJv7zf/7PUVdXV7QeAAAAAAAAAAAAAADIn4K9ef70t8R3dHR0a//x48fPel6hrFu3Lr785S9HNptNnt11110xYcKEvN1x8ODBnPMBANIok8kkb9ww/wAApcD8AwCUGvMPAFBqzD8AQKk5df5Ji4KF56urq3Pq7r45/vT1NTU1Pe7pvfz2t7+NL3zhC3Hs2LHk2Wc/+9m466678npPNps1PAMAJcX8AwCUGvMPAFBqzD8AQKkx/wAAvD+VFerg08PzbW1t3dp/6vry8vKCv3m+ubk5Pv/5z8fbb7+dPLv55pvjgQceKOi9AAAAAAAAAAAAAAAUXsHC84MGDcqpW1paurw3m83mrD/9rHxraWmJz33uc7Fnz57k2Q033BDf/OY3o6ysYD8iAAAAAAAAAAAAAACKpGDJ8FGjRuXUO3fu7PLevXv3RkdHR1KPHDkyb32dbv/+/XHHHXfk9HfllVfGggULoqKiomD3AgAAAAAAAAAAAABQPAULzzc2Nkb//v2T+rXXXuvy3k2bNuXUhQrPHz58OGbMmBFbtmxJno0dOzb+23/7b9G3b9+C3AkAAAAAAAAAAAAAQPEVLDwfETF+/Pjk8759+6K5ublL+9avX59TX3XVVXntKyLi2LFjMWvWrHj11VeTZ6NHj44nnngi+vXrl/f7AAAAAAAAAAAAAADoPQUNz0+cODGnfuGFF7q0b9myZcnnqqqquP766/PaV0dHR/zFX/xFvPzyy8mz4cOHxw9+8IOoq6vL610AAAAAAAAAAAAAAPS+gobnJ0yYEBUVFUm9ZMmS6OjoOOueNWvWxLZt25L6xhtvjOrq6rz11NnZGXPmzInVq1cnzwYPHhyLFi2KQYMG5e0eAAAAAAAAAAAAAADOHwUNz9fX18fUqVOTurm5OR5//PEzrm9vb4+HHnooqTOZTMyePfuM63fs2BGXXnpp8mfChAnv2dO8efPiueeeS+oLL7wwFi1aFEOHDn3PvQAAAAAAAAAAAAAAvD8VNDwfETFr1qyoqalJ6vnz58eiRYuis7MzZ93+/ftjxowZsXnz5uTZzTffHE1NTXnr5dFHH43Fixcn9YABA+IHP/hBjBw5Mm93AAAAAAAAAAAAAABw/slks9lsoS9ZtWpVzJ49OycwP2LEiLj22mujtrY23njjjVi5cmUcO3Ys+X706NGxePHi6Nev3xnP3bFjR0ycODGphwwZEitWrDjj+ksvvTSnzmQyUVbW/f8/sGnTpm7vOVVra2sU4ccOANCrMplM1NbWRoT5BwAoDeYfAKDUmH8AgFJj/gEASs2p809alBfjko9//OPx9a9/PebNmxdHjx6NiIjt27fH9u3b33X9mDFjYsGCBWcNzudDNpuNkydPFvQOAAAAAAAAAAAAAAB6X/dfu36OpkyZEk8//XRMmjQpKioq3nVNQ0ND3HnnnfHUU0/F0KFDi9UaAAAAAAAAAAAAAAApl8n2wu8POnDgQKxfvz527doVbW1tUV9fH8OGDYsrrrgi+vTpU+x2is6vbQIASoFfWwkAlBrzDwBQasw/AECpMf8AAKXm1PknLcp749KBAwfGxIkTe+NqAAAAAAAAAAAAAABKUFlvNwAAAAAAAAAAAAAAAIUmPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqCc8DAAAAAAAAAAAAAJB6wvMAAAAAAAAAAAAAAKSe8DwAAAAAAAAAAAAAAKknPA8AAAAAAAAAAAAAQOoJzwMAAAAAAAAAAAAAkHrC8wAAAAAAAAAAAAAApJ7wPAAAAAAAAAAAAAAAqSc8DwAAAAAAAAAAAABA6gnPAwAAAAAAAAAAAACQesLzAAAAAAAAAAAAAACknvA8AAAAAAAAAAAAAACpJzwPAAAAAAAAAAAAAEDqlffGpa2trbF+/frYtWtXHD58OBobG2Po0KExbty46NOnT9H7aWtri5dffjlaWlqitbU16urqYsiQITF+/PiorKwsej8AAAAAAAAAAAAAAORXUcPz27Zti0ceeSRWrVoVHR0d7/i+oaEhpk2bFrNmzSpKaH337t3x6KOPxrJly+LIkSPv+H7AgAHxqU99Ku69997o169fwfsBAAAAAAAAAAAAAKAwyop10dKlS+PWW2+Nn//85+8anI+I2LNnTyxYsCCmTZsWO3bsKGg/v/zlL+NTn/pU/MM//MO7BucjIg4ePBhPPvlkTJkyJV577bWC9gMAAAAAAAAAAAAAQOFkstlsttCXrF69Or7whS9EZ2dn8mzEiBFxzTXXRG1tbTQ3N8fKlSvj2LFjyfejR4+OxYsXF+SN76+++mrcdtttcfTo0eRZY2Nj/NEf/VHU19fHW2+9FStXroy33347+b6hoSF+8pOfxODBg3t8f2traxThxw4A0KsymUzU1tZGhPkHACgN5h8AoNSYfwCAUmP+AQBKzanzT1oUPDy/e/fumDx5crS1tf3+wkwm5syZE9OnT4+ysv//4vv9+/fHPffcE2vXrk2e3XLLLfHoo4/mtZ9jx47F5MmT46233kqe/dmf/Vncd999UVlZmTw7fPhwzJ07N55//vnk2bhx4+LHP/5xj3swPAMApcA/HgIApcb8AwCUGvMPAFBqzD8AQKlJY3i+7L2X9MzChQuT4HxExN133x133HFHTnA+IqKuri6eeOKJGDVqVPLs+eefj02bNuW1nx/96Ec5wflPf/rTMWfOnJzgfEREv3794pFHHonrrrsuebZhw4b4xS9+kdd+AAAAAAAAAAAAAAAovIKG5/fu3RtLlixJ6uHDh8fMmTPPuL6qqirmzp2b1NlsNhYuXJi3fjo6OuKJJ55I6v79+8ecOXPOuL6srCy++tWv5gT9v/Od7+StHwAAAAAAAAAAAAAAiqOg4fnly5dHR0dHUk+dOjUqKirOuue6666LkSNHJvXq1avjyJEjeenn17/+dRw4cCCpP/nJT8aAAQPOuufiiy+Oj370o0n96quvxptvvpmXfgAAAAAAAAAAAAAAKI6ChudXrFiRU0+ePLlL+2666abkc3t7e7z44osF6efUe87m9L6XL1+el34AAAAAAAAAAAAAACiOgobn161bl3yur6+PYcOGdWnfuHHjcuqXXnopL/28/PLLyec+ffrE5Zdf3qV9V1xxRUH6AQAAAAAAAAAAAACgOAoWnm9paYlDhw4l9ZgxY7q8t6mpKafesmVLj/vp7OyM7du3J/XFF18cNTU1Xdo7cuTI6Nu3b177AQAAAAAAAAAAAACgeAoWnt+6dWtOfdFFF3V5b319fVRUVCT1tm3betzPzp07o729/Zz6yWQyMXjw4KR+8803o6Ojo8c9AQAAAAAAAAAAAABQHAV98/ypTg2fv5dMJhODBg0641nF7icicvo5ceJE7Nu3r8c9AQAAAAAAAAAAAABQHOWFOvjIkSM5dXV1dbf219TUJJ9PnDgR7e3tUVVVdc79tLW15a2fdzuvOzKZzDnvBQB4vzh15jH/AAClwPwDAJQa8w8AUGrMPwBAqUnjzFO08Hx3g++nr29ra+tReD7f/Zx+XncMGDDgnPcCALwfmX8AgFJj/gEASo35BwAoNeYfAID3p7JCHdze3p5TV1RUdGt/ZWXlWc97v/cDAAAAAAAAAAAAAEDxFCw8f/qb2js6Orq1//jx42c97/3eDwAAAAAAAAAAAAAAxVOw8Hx1dXVO3d03tZ++vqam5rzq5/TzAAAAAAAAAAAAAAA4fxUtPN/W1tat/aeuLy8v7/Gb3k8P3/ekn3c7DwAAAAAAAAAAAACA81fBwvODBg3KqVtaWrq8N5vN5qw//axi9xMRsWvXruRzeXl5XHjhhT3uCQAAAAAAAAAAAACA4ihYeH7UqFE59c6dO7u8d+/evdHR0ZHUI0eO7HE/Q4YMib59+55TP9lsNic8P3z48KioqOhxTwAAAAAAAAAAAAAAFEfBwvONjY3Rv3//pH7ttde6vHfTpk05dT7C82VlZTFixIikbm5ujra2ti7t3bJlS7S3t+e1HwAAAAAAAAAAAAAAiqdg4fmIiPHjxyef9+3bF83NzV3at379+pz6qquuyns/J0+ejI0bN3Zp34YNGwrSDwAAAAAAAAAAAAAAxVHQ8PzEiRNz6hdeeKFL+5YtW5Z8rqqqiuuvv75X+zl93ennAAAAAAAAAAAAAABwfitoeH7ChAlRUVGR1EuWLImOjo6z7lmzZk1s27YtqW+88caorq7OSz9XX3111NXVJfVzzz0Xb7/99ln3vPHGG/GrX/0qqceOHRvDhg3LSz8AAAAAAAAAAAAAABRHQcPz9fX1MXXq1KRubm6Oxx9//Izr29vb46GHHkrqTCYTs2fPPuP6HTt2xKWXXpr8mTBhwln7qaioiBkzZiT1oUOH4uGHHz7j+s7OznjwwQejs7MzefbFL37xrHcAAAAAAAAAAAAAAHD+KWh4PiJi1qxZUVNTk9Tz58+PRYsW5QTSIyL2798fM2bMiM2bNyfPbr755mhqasprP7fddlv84R/+YVL/9Kc/jW984xtx/PjxnHWHDx+OL3/5y7FmzZrk2bhx42LSpEl57QcAAAAAAAAAAAAAgMLLZLPZbKEvWbVqVcyePTsnMD9ixIi49tpro7a2Nt54441YuXJlHDt2LPl+9OjRsXjx4ujXr98Zz92xY0dMnDgxqYcMGRIrVqx4z35effXVuO222+Lo0aPJs8bGxrjxxhvjwgsvjF27dsWKFSvi7bffTr5vaGiIn/zkJzF48OAu/70BAAAAAAAAAAAAADg/FCU8HxHxzDPPxLx583IC62cyZsyYWLBgQQwdOvSs6841PB8R8c///M9x//33R2tr63uuHTp0aMyfPz/vb8EHAAAAAAAAAAAAAKA4yop10ZQpU+Lpp5+OSZMmRUVFxbuuaWhoiDvvvDOeeuqp9wzO99QNN9wQzz77bEyZMiUuuOCCd10zYMCAuP3222Pp0qWC8wAAAAAAAAAAAAAA72NFe/P8qQ4cOBDr16+PXbt2RVtbW9TX18ewYcPiiiuuiD59+hS7nWhra4uXX3453nrrrTh48GDU1dXFkCFD4sorr4zKysqi9wMAAAAAAAAAAAAAQH71SngeAAAAAAAAAAAAAACKqay3GwAAAAAAAAAAAAAAgEITngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEi98t5u4HzQ1tYWL7/8crS0tERra2vU1dXFkCFDYvz48VFZWdnb7QEAAAAAAAAAAAAA0ENFC8+3tbXFpk2bYuPGjbFx48Z45ZVXYufOncn3Q4YMiRUrVhSrnYiI2L17dzz66KOxbNmyOHLkyDu+HzBgQHzqU5+Ke++9N/r161fU3gAAAAAAAAAAAAAAyJ9MNpvNFvKCRYsWxdNPPx2bN2+Ozs7OM64rdnj+l7/8Zdx///1x4MCB91w7bNiwmD9/fowZM6YInQEAAAAAAAAAAAAAkG8Ff/P8Sy+9FL/73e8KfU23vPrqq3HXXXfF0aNHk2eNjY3xR3/0R1FfXx9vvfVWrFy5Mt5+++2IiHjzzTfjz//8z+MnP/lJDB48uLfaBgAAAAAAAAAAAADgHBU8PP9uqqurY+zYsfHqq6/GkSNHinr3sWPH4s4778wJzv/Zn/1Z3HfffVFZWZk8O3z4cMydOzeef/75iIjYs2dP3HvvvfHjH/+4qP0CAAAAAAAAAAAAANBzBQ/PV1VVxeWXXx6XXXZZfPjDH47LLrssRo0aFWVlZTFhwoSih+d/9KMfxVtvvZXUn/70p2POnDnvWNevX7945JFH4sCBA7FmzZqIiNiwYUP84he/iEmTJhWtXwAAAAAAAAAAAAAAei6TzWazvXX5hAkTYufOnRERMWTIkFixYkVB7+vo6IgbbrghDhw4EBER/fv3j+XLl8eAAQPOuOeNN96IyZMnR2dnZ0REjB07Np5++umC9gkAAAAAAAAAAAAAQH6V9XYDxfTrX/86Cc5HRHzyk588a3A+IuLiiy+Oj370o0n96quvxptvvlmwHgEAAAAAAAAAAAAAyL+SCs+f/mb7m266qUv7Jk+enFMvX748bz0BAAAAAAAAAAAAAFB4JRWef/nll5PPffr0icsvv7xL+6644oqc+qWXXsprXwAAAAAAAAAAAAAAFFbJhOc7Oztj+/btSX3xxRdHTU1Nl/aOHDky+vbtm9RbtmzJd3sAAAAAAAAAAAAAABRQyYTnd+7cGe3t7Ul90UUXdXlvJpOJwYMHJ/Wbb74ZHR0dee0PAAAAAAAAAAAAAIDCKZnwfEtLS059ahi+KwYNGpR8PnHiROzbty8vfQEAAAAAAAAAAAAAUHglE55va2vLqaurq7u1v6am5qznAQAAAAAAAAAAAABw/iqZ8PyRI0dy6qqqqm7tP3396ecBAAAAAAAAAAAAAHD+KpnwfHt7e05dUVHRrf2VlZVnPQ8AAAAAAAAAAAAAgPNXeW83UCynvzm+o6OjW/uPHz9+1vO64+DBg5HNZs95PwDA+0Emk4kBAwZEhPkHACgN5h8AoNSYfwCAUmP+AQBKzanzT1qUTHi+uro6p+7um+NPX3/6ed2RzWYNzwBASTH/AAClxvwDAJQa8w8AUGrMPwAA709lvd1AsdTU1OTUbW1t3dp/+vrTzwMAAAAAAAAAAAAA4PxVMuH5QYMG5dQtLS3d2r9r167kc3l5eVx44YV56QsAAAAAAAAAAAAAgMIrmfD8kCFDom/fvkm9c+fOLu/NZrM54fnhw4dHRUVFXvsDAAAAAAAAAAAAAKBwSiY8X1ZWFiNGjEjq5ubmaGtr69LeLVu2RHt7e1KPHDky3+0BAAAAAAAAAAAAAFBAJROej4gYP3588vnkyZOxcePGLu3bsGFDTn3VVVfltS8AAAAAAAAAAAAAAAqrpMLzEydOzKlfeOGFLu07fd3p5wAAAAAAAAAAAAAAcH4rqfD81VdfHXV1dUn93HPPxdtvv33WPW+88Ub86le/SuqxY8fGsGHDCtYjAAAAAAAAAAAAAAD5974Oz+/YsSMuvfTS5M+ECRPOur6ioiJmzJiR1IcOHYqHH374jOs7OzvjwQcfjM7OzuTZF7/4xZ43DgAAAAAAAAAAAABAUb2vw/Pn4rbbbos//MM/TOqf/vSn8Y1vfCOOHz+es+7w4cPx5S9/OdasWZM8GzduXEyaNKlovQIAAAAAAAAAAAAAkB/lhb5g586d8cd//Mfv+t3Jkydz1jU1Nb3rur/927+Nq6++Oi/99O3bNx577LG47bbb4ujRoxER8YMf/CD+8R//MW688ca48MILY9euXbFixYp4++23k30NDQ3xrW99Ky89AAAAAAAAAAAAAABQXAUPz2ez2ZyQ/NmcaV02m81nSzF27NiYP39+3H///dHa2hoREbt3744lS5a860nMqPUAAFrKSURBVPqhQ4fG/PnzY/DgwXntAwAAAAAAAAAAAACA4ijr7QZ6yw033BDPPvtsTJkyJS644IJ3XTNgwIC4/fbbY+nSpWd8Kz4AAAAAAAAAAAAAAOe/TDbfr3V/H2pra4uXX3453nrrrTh48GDU1dXFkCFD4sorr4zKysq839fa2pr3t+kDAJxvMplM1NbWRoT5BwAoDeYfAKDUmH8AgFJj/gEASs2p809alPd2A+eDmpqauPHGG3u7DQAAAAAAAAAAAAAACqSstxsAAAAAAAAAAAAAAIBCE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9cp749LW1tZYv3597Nq1Kw4fPhyNjY0xdOjQGDduXPTp06eovXR2dsbmzZvjtddeiwMHDsTRo0ejpqYmLrzwwmhqaooRI0ZEJpMpak8AAAAAAAAAAAAAAORXUcPz27Zti0ceeSRWrVoVHR0d7/i+oaEhpk2bFrNmzYrKysqC9nLo0KF44okn4qc//Wns2bPnjOuGDBkSn/nMZ2L69OlRVVVV0J4AAAAAAAAAAAAAACiMTDabzRbjoqVLl8a8efPiyJEj77m2qakp5s+fH0OHDi1ILxs2bIh77rknWlpaurznAx/4QDz22GMxatSoHt/f2toaRfqxAwD0mkwmE7W1tRFh/gEASoP5BwAoNeYfAKDUmH8AgFJz6vyTFkUJz69evTq+8IUvRGdnZ/JsxIgRcc0110RtbW00NzfHypUr49ixY8n3o0ePjsWLF0e/fv3y2svrr78et912Wxw+fDh5lslkYvz48TF27Njo379/HDx4MH7zm9/Ehg0bcvY2NDTEU089FRdddFGPejA8AwClwD8eAgClxvwDAJQa8w8AUGrMPwBAqRGePwe7d++OyZMnR1tb2+8vzGRizpw5MX369CgrK0vW7d+/P+65555Yu3Zt8uyWW26JRx99NG+9ZLPZmDp1amzcuDF5dskll8QjjzwSl1xyyTvWb9q0Kb70pS/Ftm3bkmeTJk2Kxx57rEd9GJ4BgFLgHw8BgFJj/gEASo35BwAoNeYfAKDUpDE8X/beS3pm4cKFSXA+IuLuu++OO+64Iyc4HxFRV1cXTzzxRIwaNSp59vzzz8emTZvy1svGjRtzgvMDBgyIH/zgB+8anI+IaGpqih/+8IfRv3//5Nny5cujpaUlbz0BAAAAAAAAAAAAAFB4BQ3P7927N5YsWZLUw4cPj5kzZ55xfVVVVcydOzeps9lsLFy4MG/9rFmzJqeeOnVqNDQ0nHXPoEGD4t/+23+b09Ovf/3rvPUEAAAAAAAAAAAAAEDhFTQ8v3z58ujo6EjqqVOnRkVFxVn3XHfddTFy5MikXr16dRw5ciQv/Zz+xviPfOQjXdp3xRVX5NS7d+/OSz8AAAAAAAAAAAAAABRHQcPzK1asyKknT57cpX033XRT8rm9vT1efPHFvPTT2dmZU/ft27dL+y644IKcOpPJ5KUfAAAAAAAAAAAAAACKo6Dh+XXr1iWf6+vrY9iwYV3aN27cuJz6pZdeyks/Q4cOzanfeuutLu3buXNnTn3xxRfnpR8AAAAAAAAAAAAAAIqjYOH5lpaWOHToUFKPGTOmy3ubmppy6i1btuSlpxtuuCGn/h//4390ad/zzz+ffK6uro5rrrkmL/0AAAAAAAAAAAAAAFAcBQvPb926Nae+6KKLury3vr4+Kioqknrbtm156elDH/pQfPzjH0/qF198Mf7+7//+rHt++MMfxv/8n/8zqe+4447o379/XvoBAAAAAAAAAAAAAKA4Cvrm+VMNHjy4y3szmUwMGjTojGf1xN/8zd/EsGHDknrevHnxpS99KX7961/H4cOHI5vNxqFDh2LNmjVx9913x9e+9rVk7Sc+8YmYPXt23noBAAAAAAAAAAAAAKA4ygt18JEjR3Lq6urqbu2vqalJPp84cSLa29ujqqqqx301NjbG4sWLY968efFP//RPERHx3HPPxXPPPXfGPf369YsZM2bEzJkzo0+fPj3uIZPJ9PgMAIDz3akzj/kHACgF5h8AoNSYfwCAUmP+AQBKTRpnnqKF57sbfD99fVtbW17C8xERF154YcyfPz9Wr14dDzzwQOzateuMa4cPHx4PPPBA3HDDDXm5OyJiwIABeTsLAOD9wPwDAJQa8w8AUGrMPwBAqTH/AAC8P5UV6uD29vacuqKiolv7Kysrz3peT7S0tMS9994bs2bNOmtwPiKiubk5ZsyYEZ/5zGdi8+bNeesBAAAAAAAAAAAAAIDiKdib509/S3xHR0e39h8/fvys552r119/PT73uc/FgQMHIuL3v07gk5/8ZNx6663xoQ99KPr37x+HDh2KTZs2xT/8wz/Ec889F9lsNjZs2BD/5t/8m/je974XV111VY96OHjwYGSz2Xz8dQAAzluZTCZ544b5BwAoBeYfAKDUmH8AgFJj/gEASs2p809aFCw8X11dnVN3983xp6+vqanpcU8HDx6MP//zP0+C8xUVFTF//vz4xCc+kbOurq4uPvaxj8XHPvaxuOWWW+Iv/uIvoqOjI44ePRp33XVX/OM//mM0NDSccx/ZbNbwDACUFPMPAFBqzD8AQKkx/wAApcb8AwDw/lRWqINPD8+3tbV1a/+p68vLy/Py5vnvfve7sXv37qS+99573xGcP92ECRPinnvuSerW1tZYuHBhj3sBAAAAAAAAAAAAAKB4ChaeHzRoUE7d0tLS5b3ZbDZn/elnnYtsNhvPPPNMUldXV8e///f/vkt7b7/99pz/DPDss89GZ2dnj3sCAAAAAAAAAAAAAKA4ChaeHzVqVE69c+fOLu/du3dvdHR0JPXIkSN73E9zc3Ps378/qS+//PLo27dvl/b27ds3LrvssqR+++2344033uhxTwAAAAAAAAAAAAAAFEfBwvONjY3Rv3//pH7ttde6vHfTpk05dT7C8/v27cup6+vru7W/oaEhpz5w4ECPewIAAAAAAAAAAAAAoDgKFp6PiBg/fnzyed++fdHc3NylfevXr8+pr7rqqh73UlVVlVO3t7d3a//Ro0dz6urq6h73BAAAAAAAAAAAAABAcRQ0PD9x4sSc+oUXXujSvmXLliWfq6qq4vrrr+9xLxdeeGFOvWXLlm7tP319XV1dj3sCAAAAAAAAAAAAAKA4ChqenzBhQlRUVCT1kiVLoqOj46x71qxZE9u2bUvqG2+8MS9veR88eHA0NjYm9datW+P111/v0t5XXnkltm/fntRDhgzJOQsAAAAAAAAAAAAAgPNbQcPz9fX1MXXq1KRubm6Oxx9//Izr29vb46GHHkrqTCYTs2fPPuP6HTt2xKWXXpr8mTBhwln7+cQnPpFTz5s3L44fP37WPe3t7fHVr34159l73QMAAAAAAAAAAAAAwPmloOH5iIhZs2ZFTU1NUs+fPz8WLVoUnZ2dOev2798fM2bMiM2bNyfPbr755mhqaspbLzNnzsx5E/6GDRvi85//fDQ3N7/r+q1bt8b06dPjlVdeSZ5VVVXFjBkz8tYTAAAAAAAAAAAAAACFl8lms9lCX7Jq1aqYPXt2TmB+xIgRce2110ZtbW288cYbsXLlyjh27Fjy/ejRo2Px4sXRr1+/M567Y8eOmDhxYlIPGTIkVqxYcdZeFi9eHA888EDOsz59+sT48eOjqakp+vXrF4cOHYpXX3011q9f/46Q/ze+8Y2YMmVKV/7aZ9Ta2hpF+LEDAPSqTCYTtbW1EWH+AQBKg/kHACg15h8AoNSYfwCAUnPq/JMW5cW45OMf/3h8/etfj3nz5sXRo0cjImL79u2xffv2d10/ZsyYWLBgwVmD8+dq2rRpERHxta99LQnrnzx5MtauXRtr1649477q6uqYO3duj4PzAAAAAAAAAAAAAAAUX1mxLpoyZUo8/fTTMWnSpKioqHjXNQ0NDXHnnXfGU089FUOHDi1YL9OmTYuf/exn8dnPfjZqamrOurZfv35x2223xc9+9rO49dZbC9YTAAAAAAAAAAAAAACFk8n2wu8POnDgQKxfvz527doVbW1tUV9fH8OGDYsrrrgi+vTpU9ReTp48Gb/97W/jd7/7XbS2tsaRI0eiuro6amtr49JLL41LLrkk7z35tU0AQCnwaysBgFJj/gEASo35BwAoNeYfAKDUnDr/pEV5b1w6cODAmDhxYm9c/Q59+vSJpqamaGpq6u1WAAAAAAAAAAAAAAAokLLebgAAAAAAAAAAAAAAAApNeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1ynvj0tbW1li/fn3s2rUrDh8+HI2NjTF06NAYN25c9OnTpzdaioiIffv2xf/+3/873nzzzWhra4vKysqoq6uL4cOHx5gxY6KmpqbXegMAAAAAAAAAAAAA4NwVNTy/bdu2eOSRR2LVqlXR0dHxju8bGhpi2rRpMWvWrKisrCxaX8uXL49FixbFyy+/HNls9l3XlJWVxdixY+P222+Pf/2v/3XRegMAAAAAAAAAAAAAoOfKinXR0qVL49Zbb42f//zn7xqcj4jYs2dPLFiwIKZNmxY7duwoeE8HDhyIWbNmxRe/+MV46aWXzhicj4jo7OyMV155JVatWlXwvgAAAAAAAAAAAAAAyK+ivHl+9erV8ZWvfCU6OzuTZyNGjIhrrrkmamtro7m5OVauXBnHjh2LiIhNmzbFrFmzYvHixdGvX7+C9NTS0hLTp0+Pbdu25Ty/5JJL4vLLL4/6+vo4efJk7N69O37zm9/Eli1bCtIHAAAAAAAAAAAAAACFV/Dw/O7du+O+++5LgvOZTCbmzJkT06dPj7Ky///i+/3798c999wTa9eujYiIzZs3xwMPPBCPPvpo3ntqb2+PmTNn5gTnr7zyynjggQfi0ksvfdc9b775ZixdujRaW1vz3g8AAAAAAAAAAAAAAIVV9t5LembhwoXR1taW1HfffXfccccdOcH5iIi6urp44oknYtSoUcmz559/PjZt2pT3nr7zne/E66+/ntSf+tSn4kc/+tEZg/MREcOGDYu77ror/vqv/zrv/QAAAAAAAAAAAAAAUFgFDc/v3bs3lixZktTDhw+PmTNnnnF9VVVVzJ07N6mz2WwsXLgwrz1t3rw5vv/97yf12LFj4+tf/3pkMpm83gMAAAAAAAAAAAAAwPmjoOH55cuXR0dHR1JPnTo1Kioqzrrnuuuui5EjRyb16tWr48iRI3nradGiRTk9/dVf/VWUl5fn7XwAAAAAAAAAAAAAAM4/BQ3Pr1ixIqeePHlyl/bddNNNyef29vZ48cUX89JPW1tbPP/880k9ZsyYGD9+fF7OBgAAAAAAAAAAAADg/FXQ8Py6deuSz/X19TFs2LAu7Rs3blxO/dJLL+Wln5UrV+a8xf6WW27Jy7kAAAAAAAAAAAAAAJzfChaeb2lpiUOHDiX1mDFjury3qakpp96yZUteevpf/+t/5dRXXnllXs4FAAAAAAAAAAAAAOD8Vl6og7du3ZpTX3TRRV3eW19fHxUVFdHR0REREdu2bctLT7/5zW+Sz+Xl5Umgv6WlJZYuXRorVqyIHTt2xOHDh2PgwIExdOjQuO666+JP/uRPuvzWfAAAAAAAAAAAAAAAzj8FC8+3tLTk1IMHD+7y3kwmE4MGDYodO3a861nn6tQ32Dc0NETfvn3jv//3/x7/5b/8lzhy5EjO2qNHj8b//b//N9auXRvf+c534jOf+Uz8x//4H6OysjIvvQAAAAAAAAAAAAAAUDwFC8+fHkavrq7u1v6amprk84kTJ6K9vT2qqqrOuZ/Ozs44dOhQUjc0NMS3vvWtWLhw4Xvu7ejoiCeffDJeffXV+N73vhf9+vU75z4ifv+fAwAA0u7Umcf8AwCUAvMPAFBqzD8AQKkx/wAApSaNM0/RwvPdDb6fvr6tra1H4flDhw5FNptN6m3btsXGjRsjIqK8vDymTZsWU6ZMiVGjRkUmk4mtW7fGM888E3//938fJ06ciIiI9evXx1/91V/Ff/2v//Wc+4iIGDBgQI/2AwC835h/AIBSY/4BAEqN+QcAKDXmHwCA96eChefb29tz6oqKim7tr6ysPOt53XV6mP9f3kJfVVUVCxcujOuvvz7n+w9/+MPx4Q9/OCZOnBhf+MIX4tixYxER8cILL8SKFStiwoQJPeoHAAAAAAAAAAAAAIDiKVh4/vS3xHd0dHRr//Hjx896Xk/7+Rf33nvvO4Lzp7ruuuviS1/6Unzta19Lnn3/+9/vUXj+4MGDOW/BBwBIo0wmk7xxw/wDAJQC8w8AUGrMPwBAqTH/AACl5tT5Jy0KFp6vrq7Oqbv75vjT19fU1OS1n4jf//qk22677T33fvazn43vfve7sX///oiIWLduXbS2tkZtbe059ZLNZg3PAEBJMf8AAKXG/AMAlBrzDwBQasw/AADvT2WFOvj0sHpbW1u39p+6vry8vMdvnu/bt2+Ul+f+X4GPfvSjXTq3srIyPvaxjyV1NpuNDRs29KgfAAAAAAAAAAAAAACKp2Dh+UGDBuXULS0tXd6bzWZz1p9+Vr56+uAHP9jlvZdccklO3Z2/DwAAAAAAAAAAAAAAvatg4flRo0bl1Dt37uzy3r1790ZHR0dSjxw5siA9DRgwoMt7T1978ODBvPQEAAAAAAAAAAAAAEDhFSw839jYGP3790/q1157rct7N23alFPnKzw/evTonPr48eNd3nv62qqqqrz0BAAAAAAAAAAAAABA4RUsPB8RMX78+OTzvn37orm5uUv71q9fn1NfddVVeenn6quvzqlbWlq6vHfXrl059cCBA/PSEwAAAAAAAAAAAAAAhVfQ8PzEiRNz6hdeeKFL+5YtW5Z8rqqqiuuvvz4v/Vx//fVRXV2d1KeH9M9mw4YNOXVTU1NeegIAAAAAAAAAAAAAoPAKGp6fMGFCVFRUJPWSJUuio6PjrHvWrFkT27ZtS+obb7wxJ/DeE5WVlTFp0qSk3rhxY/zud797z31btmyJdevWJXVjY2N88IMfzEtPAAAAAAAAAAAAAAAUXkHD8/X19TF16tSkbm5ujscff/yM69vb2+Ohhx5K6kwmE7Nnzz7j+h07dsSll16a/JkwYcJ79vTFL34xysvLk3revHlnDfSfOHEi5s2bF9lsNnl2++23v+c9AAAAAAAAAAAAAACcPwoano+ImDVrVtTU1CT1/PnzY9GiRdHZ2Zmzbv/+/TFjxozYvHlz8uzmm2+OpqamvPbzgQ98IKZNm5bU69ati9mzZ8fu3bvfsXbPnj1x5513xtq1a5NnQ4YMiX/37/5dXnsCAAAAAAAAAAAAAKCwMtlTX6leIKtWrYrZs2fnBOZHjBgR1157bdTW1sYbb7wRK1eujGPHjiXfjx49OhYvXhz9+vU747k7duyIiRMnJvWQIUNixYoV79nP8ePH43Of+1ysW7cueda3b9+4/vrrY9SoURERsXXr1njxxRfj6NGjyZoLLrgg/u7v/i7Gjh3btb/4GbS2tkYRfuwAAL0qk8lEbW1tRJh/AIDSYP4BAEqN+QcAKDXmHwCg1Jw6/6RFUcLzERHPPPNMzJs3LyeMfiZjxoyJBQsWxNChQ8+67lzD8xG/H2C/9KUvxYsvvtil9Q0NDbFw4cK47LLLurT+ve42PAMAaecfDwGAUmP+AQBKjfkHACg15h8AoNSkMTxfVqyLpkyZEk8//XRMmjQpKioq3nVNQ0ND3HnnnfHUU0+9Z3C+p2pra+P73/9+fPWrX43Ro0efdd2sWbPiueeey0twHgAAAAAAAAAAAACA4ivam+dPdeDAgVi/fn3s2rUr2traor6+PoYNGxZXXHFF9OnTp9jtRETE66+/Hlu2bImWlpY4efJkDBw4MD74wQ/GZZddFmVl+f0/Bv7nKQBQCrx5AwAoNeYfAKDUmH8AgFJj/gEASk0a3zxf3huXDhw4MCZOnNgbV5/Rhz70ofjQhz7U220AAAAAAAAAAAAAAFAA+X2lOgAAAAAAAAAAAAAAnIeE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEg94XkAAAAAAAAAAAAAAFJPeB4AAAAAAAAAAAAAgNQTngcAAAAAAAAAAAAAIPWE5wEAAAAAAAAAAAAASD3heQAAAAAAAAAAAAAAUk94HgAAAAAAAAAAAACA1BOeBwAAAAAAAAAAAAAg9YTnAQAAAAAAAAAAAABIPeF5AAAAAAAAAAAAAABST3geAAAAAAAAAAAAAIDUE54HAAAAAAAAAAAAACD1hOcBAAAAAAAAAAAAAEi98t64tLW1NdavXx+7du2Kw4cPR2NjYwwdOjTGjRsXffr06Y2WAAAAAAAAAAAAAABIsaKG57dt2xaPPPJIrFq1Kjo6Ot7xfUNDQ0ybNi1mzZoVlZWVxWwtx6JFi+Lhhx/OeXb11VfHk08+2UsdAQAAAAAAAAAAAADQE2XFumjp0qVx6623xs9//vN3Dc5HROzZsycWLFgQ06ZNix07dhSrtRw7duyIb3/7271yNwAAAAAAAAAAAAAAhVGUN8+vXv3/2rv3ICvrM0/gz2m6adJAgLYbWLmIQHSB6IgIXhMTMCWrmUTNLE6WsQiRBYkmxssUSU1A2DjqOAPJDCqOIWFTJrMhGEdj6UgmiFSijMhlBwNqhpstrDTXRmigbeizf1i+w2m5dNPnNKdPfz5VVJ3nPb/f730E/3iq+3vesyy+853vRENDQ3JtwIABcemll0b37t2jqqoqli5dGocPH46IiPXr18eUKVNi4cKF0aVLl9ZoMXHffffFwYMHW/WeAAAAAAAAAAAAAADkVs7D8zt27Ii77rorCc6nUqmYNm1aTJgwIYqK/vPB93v27Ik777wzVqxYERERGzZsiBkzZsScOXNy3WLimWeeid///vcREVFZWRk7d+5stXsDAAAAAAAAAAAAAJA7Rade0jLz5s2L2trapP7mN78ZEydOzAjOR0SUl5fH/PnzY9CgQcm1F154IdavX5/rFiPiw/D+Qw89FBEfBvy/+93vtsp9AQAAAAAAAAAAAADIvZyG53ft2hWLFi1K6v79+8fkyZNPuL60tDSmT5+e1Ol0OubNm5fLFhMPPPBA7N27NyIibr755viTP/mTVrkvAAAAAAAAAAAAAAC5l9Pw/JIlS6K+vj6px40bFyUlJSfdc/nll8fAgQOTetmyZXHw4MGc9RgR8bvf/S6ee+65iIiorKyMe+65J6f3AwAAAAAAAAAAAACgdeU0PP/SSy9l1GPHjm3SvmuvvTZ5XVdXF6+88kpW+zrWwYMH47777kvq7373u/HJT34yZ/cDAAAAAAAAAAAAAKD15TQ8v2rVquR1RUVF9OvXr0n7hg8fnlG//vrrWe3rWD/84Q9j27ZtERFx1VVXxfXXX5+zewEAAAAAAAAAAAAAcGbkLDxfXV0d+/fvT+ohQ4Y0ee/QoUMz6o0bN2atr2OtXbs2fvazn0VERGlpacYT6AEAAAAAAAAAAAAAKBw5C89v2rQpoz777LObvLeioiJKSkqSevPmzVnr6yNHjhyJ6dOnx9GjRyMiYurUqdG/f/+s3wcAAAAAAAAAAAAAgDMvp0+eP1bv3r2bvDeVSkWvXr1OeFY2zJ8/P956662IiBg0aFDceuutWb8HAAAAAAAAAAAAAAD5oThXBx88eDCjLisra9b+zp07J6+PHDkSdXV1UVpampXetmzZEo899lhEfBjUnzVrVnTs2DErZzdFKpVqtXsBAJwpx8485h8AoD0w/wAA7Y35BwBob8w/AEB7U4gzT6uF55sbfG+8vra2Nivh+XQ6HdOnT4+6urqIiLjpppti5MiRLT63Obp169aq9wMAONPMPwBAe2P+AQDaG/MPANDemH8AANqmolwd/FE4/SMlJSXN2t/4SfCNzztdTz31VKxYsSIiInr06BF/+Zd/mZVzAQAAAAAAAAAAAADIXzl78nzjp8TX19c3a/8HH3xw0vNOx86dO+Phhx9O6mnTpkWPHj1afG5z7du3L9LpdKvfFwCgNaVSqeSJG+YfAKA9MP8AAO2N+QcAaG/MPwBAe3Ps/FMochaeLysry6ib++T4xus7d+7c4p6+//3vx/vvvx8REaNGjYobb7yxxWeejnQ6bXgGANoV8w8A0N6YfwCA9sb8AwC0N+YfAIC2qShXBzcOz9fW1jZr/7Hri4uLW/zk+SVLlsTixYsjIqKkpCRmzZrVovMAAAAAAAAAAAAAAGg7chae79WrV0ZdXV3d5L3pdDpjfeOzTsdDDz2UvJ48eXIMHDiwxWcCAAAAAAAAAAAAANA2FOfq4EGDBmXU27Zta/LeXbt2RX19fVJnI+i+d+/e5PXjjz8ejz/+eLP2r1ixIoYOHZrUI0eOjJ/+9Kct7gsAAAAAAAAAAAAAgNzLWXi+Z8+e0bVr19i/f39ERLz55ptN3rt+/fqMOttPiT969GiL9zU0NGSrHQAAAAAAAAAAAAAAcqwol4ePGDEieb179+6oqqpq0r7Vq1dn1CNHjsxqXwAAAAAAAAAAAAAAtC85e/J8RMSYMWPi5ZdfTuoXX3wxJk+efMp9ixcvTl6XlpbGlVde2eJeVq5c2az1W7dujTFjxiT1qFGj4sknn2xxHwAAAAAAAAAAAAAAtL6cPnl+9OjRUVJSktSLFi2K+vr6k+5Zvnx5bN68OamvvvrqKCsry1mPAAAAAAAAAAAAAAAUvpyG5ysqKmLcuHFJXVVVFU888cQJ19fV1cX999+f1KlUKqZOnXrC9Vu3bo3zzz8/+TN69OjsNA4AAAAAAAAAAAAAQEHJaXg+ImLKlCnRuXPnpJ47d24sWLAgGhoaMtbt2bMnJk2aFBs2bEiuXXfddTF06NBctwgAAAAAAAAAAAAAQIErzvUNevXqFXPmzImpU6dGQ0NDpNPpeOihh+IXv/hFXHbZZdG9e/d45513YunSpXH48OFk3+DBg+N//a//lev2AAAAAAAAAAAAAABoB3Ieno+I+NznPhcPPvhgzJw5Mw4dOhQREVu2bIktW7Ycd/2QIUPikUceiS5durRGewAAAAAAAAAAAAAAFLii1rrRDTfcEE8//XRcc801UVJSctw1lZWVcfvtt8cvf/nL6Nu3b2u1BgAAAAAAAAAAAABAgUul0+l0a9907969sXr16ti+fXvU1tZGRUVF9OvXLy6++OLo0KFDa7fT6mpqauIM/LUDALSqVCoV3bt3jwjzDwDQPph/AID2xvwDALQ35h8AoL05dv4pFMVn4qY9evSIMWPGnIlbAwAAAAAAAAAAAADQDhWd6QYAAAAAAAAAAAAAACDXhOcBAAAAAAAAAAAAACh4wvMAAAAAAAAAAAAAABQ84XkAAAAAAAAAAAAAAAqe8DwAAAAAAAAAAAAAAAVPeB4AAAAAAAAAAAAAgIInPA8AAAAAAAAAAAAAQMETngcAAAAAAAAAAAAAoOAJzwMAAAAAAAAAAAAAUPCE5wEAAAAAAAAAAAAAKHjC8wAAAAAAAAAAAAAAFDzheQAAAAAAAAAAAAAACp7wPAAAAAAAAAAAAAAABU94HgAAAAAAAAAAAACAgic8DwAAAAAAAAAAAABAwROeBwAAAAAAAAAAAACg4AnPAwAAAAAAAAAAAABQ8ITnAQAAAAAAAAAAAAAoeMLzAAAAAAAAAAAAAAAUPOF5AAAAAAAAAAAAAAAKnvA8AAAAAAAAAAAAAAAFT3geAAAAAAAAAAAAAICCJzwPAAAAAAAAAAAAAEDBE54HAAAAAAAAAAAAAKDgCc8DAAAAAAAAAAAAAFDwhOcBAAAAAAAAAAAAACh4wvMAAAAAAAAAAAAAABQ84XkAAAAAAAAAAAAAAAqe8DwAAAAAAAAAAAAAAAVPeB4AAAAAAAAAAAAAgIInPA8AAAAAAAAAAAAAQMETngcAAAAAAAAAAAAAoOAJzwMAAAAAAAAAAAAAUPCE5wEAAAAAAAAAAAAAKHjC8wAAAAAAAAAAAAAAFDzheQAAAAAAAAAAAAAACp7wPAAAAAAAAAAAAAAABU94HgAAAAAAAAAAAACAgic8DwAAAAAAAAAAAABAwROeBwAAAAAAAAAAAACg4AnPAwAAAAAAAAAAAABQ8ITnAQAAAAAAAAAAAAAoeMLzAAAAAAAAAAAAAAAUPOF5AAAAAAAAAAAAAAAKnvA8AAAAAAAAAAAAAAAFT3geAAAAAAAAAAAAAICCJzwPAAAAAAAAAAAAAEDBKz4TN62pqYnVq1fH9u3b48CBA9GzZ8/o27dvDB8+PDp06NBqfRw4cCD+4z/+IzZt2hQ1NTVRX18fn/zkJ6N3795x0UUXRXl5eav1AgAAAAAAAAAAAABA7rRqeH7z5s0xe/bsePnll6O+vv5j71dWVsbNN98cU6ZMiY4dO+akhzfeeCN+85vfxKuvvhrr16+PhoaGE6698MILY8KECXH99ddHKpXKST8AAAAAAAAAAAAAAOReKp1Op1vjRs8++2zMnDkzDh48eMq1Q4cOjblz50bfvn2z2sPEiRPj1Vdfbfa+yy+/PB5++OHo2bNnVvqoqamJVvprBwA4Y1KpVHTv3j0izD8AQPtg/gEA2hvzDwDQ3ph/AID25tj5p1C0ypPnly1bFt/5zncynvI+YMCAuPTSS6N79+5RVVUVS5cujcOHD0dExPr162PKlCmxcOHC6NKlS9b62LNnz8eunX322XHRRRdFz549o6ysLHbt2hUrVqyILVu2JGuWL18eX/va1+LnP/959OjRI2v9AAAAAAAAAAAAAADQOnIent+xY0fcddddSXA+lUrFtGnTYsKECVFUVJSs27NnT9x5552xYsWKiIjYsGFDzJgxI+bMmZP1nioqKuLGG2+Mr3zlK3Huued+7P10Oh2LFy+OGTNmxL59+yIiYuPGjXHffffFP/zDP2S9HwAAAAAAAAAAAAAAcqvo1EtaZt68eVFbW5vU3/zmN2PixIkZwfmIiPLy8pg/f34MGjQoufbCCy/E+vXrs9ZLeXl5fOc734mlS5fGvffee9zgfMSHAf+xY8fGggUL4hOf+ERyffHixbF27dqs9QMAAAAAAAAAAAAAQOvIaXh+165dsWjRoqTu379/TJ48+YTrS0tLY/r06UmdTqdj3rx5WevnRz/6UUycODE6duzYpPXDhg2LCRMmZFxbvHhx1voBAAAAAAAAAAAAAKB15DQ8v2TJkqivr0/qcePGRUlJyUn3XH755TFw4MCkXrZsWRw8eDAr/RQXFzd7z/XXX59Re/I8AAAAAAAAAAAAAEDbk9Pw/EsvvZRRjx07tkn7rr322uR1XV1dvPLKK1ntqznOOeecjHr37t1nqBMAAAAAAAAAAAAAAE5XTsPzq1atSl5XVFREv379mrRv+PDhGfXrr7+e1b6ao7a2NqM+nafXAwAAAAAAAAAAAABwZuUsPF9dXR379+9P6iFDhjR579ChQzPqjRs3Zq2v5nr77bcz6t69e5+hTgAAAAAAAAAAAAAAOF05C89v2rQpoz777LObvLeioiJKSkqSevPmzVnrq7l+/etfZ9SXXXbZGeoEAAAAAAAAAAAAAIDTldMnzx+rOU9sT6VS0atXrxOe1Vq2bNkSzz33XFJ36NAhvvCFL5yRXgAAAAAAAAAAAAAAOH3FuTr44MGDGXVZWVmz9nfu3Dl5feTIkairq4vS0tKs9NYUDQ0N8b3vfS/q6+uTazfccEP069evxWenUqkWnwEAkO+OnXnMPwBAe2D+AQDaG/MPANDemH8AgPamEGeeVgvPNzf43nh9bW1tq4bnH3300Xj99deTury8PO69996snN2tW7esnAMA0FaYfwCA9sb8AwC0N+YfAKC9Mf8AALRNRbk6uK6uLqMuKSlp1v6OHTue9Lxc+u1vfxuPPvpoUqdSqfjrv/7rKC8vb7UeAAAAAAAAAAAAAADInpw9eb7xU+Lr6+ubtf+DDz446Xm5smrVqrjnnnsinU4n1+64444YPXp01u6xb9++jPMBAApRKpVKnrhh/gEA2gPzDwDQ3ph/AID2xvwDALQ3x84/hSJn4fmysrKMurlPjm+8vnPnzi3u6VTefvvtuO222+Lw4cPJta9+9atxxx13ZPU+6XTa8AwAtCvmHwCgvTH/AADtjfkHAGhvzD8AAG1TUa4Obhyer62tbdb+Y9cXFxfn/MnzVVVVceutt8b777+fXLvuuutixowZOb0vAAAAAAAAAAAAAAC5l7PwfK9evTLq6urqJu9Np9MZ6xuflW3V1dXxta99LXbu3Jlc+8xnPhMPP/xwFBXl7K8IAAAAAAAAAAAAAIBWkrNk+KBBgzLqbdu2NXnvrl27or6+PqkHDhyYtb4a27NnT0ycODGjv0suuSQeeeSRKCkpydl9AQAAAAAAAAAAAABoPTkLz/fs2TO6du2a1G+++WaT965fvz6jzlV4/sCBAzFp0qTYuHFjcm3YsGHxj//4j9GpU6ec3BMAAAAAAAAAAAAAgNaXs/B8RMSIESOS17t3746qqqom7Vu9enVGPXLkyKz2FRFx+PDhmDJlSqxbty65Nnjw4Jg/f3506dIl6/cDAAAAAAAAAAAAAODMyWl4fsyYMRn1iy++2KR9ixcvTl6XlpbGlVdemdW+6uvr41vf+lasXLkyuda/f//4yU9+EuXl5Vm9FwAAAAAAAAAAAAAAZ15Ow/OjR4+OkpKSpF60aFHU19efdM/y5ctj8+bNSX311VdHWVlZ1npqaGiIadOmxbJly5JrvXv3jgULFkSvXr2ydh8AAAAAAAAAAAAAAPJHTsPzFRUVMW7cuKSuqqqKJ5544oTr6+rq4v7770/qVCoVU6dOPeH6rVu3xvnnn5/8GT169Cl7mjlzZjz//PNJfdZZZ8WCBQuib9++p9wLAAAAAAAAAAAAAEDblNPwfETElClTonPnzkk9d+7cWLBgQTQ0NGSs27NnT0yaNCk2bNiQXLvuuuti6NChWetlzpw5sXDhwqTu1q1b/OQnP4mBAwdm7R4AAAAAAAAAAAAAAOSfVDqdTuf6Ji+//HJMnTo1IzA/YMCAuOyyy6J79+7xzjvvxNKlS+Pw4cPJ+4MHD46FCxdGly5dTnju1q1bY8yYMUndp0+feOmll064/vzzz8+oU6lUFBU1//MD69evb/aeY9XU1EQr/LUDAJxRqVQqunfvHhHmHwCgfTD/AADtjfkHAGhvzD8AQHtz7PxTKIpb4yaf+9zn4sEHH4yZM2fGoUOHIiJiy5YtsWXLluOuHzJkSDzyyCMnDc5nQzqdjqNHj+b0HgAAAAAAAAAAAAAAnHnNf+z6abrhhhvi6aefjmuuuSZKSkqOu6aysjJuv/32+OUvfxl9+/ZtrdYAAAAAAAAAAAAAAChwqfQZ+P6gvXv3xurVq2P79u1RW1sbFRUV0a9fv7j44oujQ4cOrd1Oq/O1TQBAe+BrKwGA9sb8AwC0N+YfAKC9Mf8AAO3NsfNPoSg+Ezft0aNHjBkz5kzcGgAAAAAAAAAAAACAdqjoTDcAAAAAAAAAAAAAAAC5JjwPAAAAAAAAAAAAAEDBE54HAAAAAAAAAAAAAKDgCc8DAAAAAAAAAAAAAFDwhOcBAAAAAAAAAAAAACh4wvMAAAAAAAAAAAAAABQ84XkAAAAAAAAAAAAAAAqe8DwAAAAAAAAAAAAAAAVPeB4AAAAAAAAAAAAAgIInPA8AAAAAAAAAAAAAQMETngcAAAAAAAAAAAAAoOAJzwMAAAAAAAAAAAAAUPCE5wEAAAAAAAAAAAAAKHjC8wAAAAAAAAAAAAAAFDzheQAAAAAAAAAAAAAACp7wPAAAAAAAAAAAAAAABU94HgAAAAAAAAAAAACAgic8DwAAAAAAAAAAAABAwROeBwAAAAAAAAAAAACg4AnPAwAAAAAAAAAAAABQ8ITnAQAAAAAAAAAAAAAoeMLzAAAAAAAAAAAAAAAUPOF5AAAAAAAAAAAAAAAKnvA8AAAAAAAAAAAAAAAFT3geAAAAAAAAAAAAAICCJzwPAAAAAAAAAAAAAEDBE54HAAAAAAAAAAAAAKDgCc8DAAAAAAAAAAAAAFDwhOcBAAAAAAAAAAAAACh4wvMAAAAAAAAAAAAAABQ84XkAAAAAAAAAAAAAAAqe8DwAAAAAAAAAAAAAAAVPeB4AAAAAAAAAAAAAgIInPA8AAAAAAAAAAAAAQMETngcAAAAAAAAAAAAAoOAJzwMAAAAAAAAAAAAAUPCE5wEAAAAAAAAAAAAAKHjC8wAAAAAAAAAAAAAAFDzheQAAAAAAAAAAAAAACp7wPAAAAAAAAAAAAAAABU94HgAAAAAAAAAAAACAgic8DwAAAAAAAAAAAABAwROeBwAAAAAAAAAAAACg4AnPAwAAAAAAAAAAAABQ8ITnAQAAAAAAAAAAAAAoeMLzAAAAAAAAAAAAAAAUvOIzcdOamppYvXp1bN++PQ4cOBA9e/aMvn37xvDhw6NDhw6t3k9tbW2sXLkyqquro6amJsrLy6NPnz4xYsSI6NixY6v3AwAAAAAAAAAAAABAdrVqeH7z5s0xe/bsePnll6O+vv5j71dWVsbNN98cU6ZMaZXQ+o4dO2LOnDmxePHiOHjw4Mfe79atW3zpS1+Kb3/729GlS5ec9wMAAAAAAAAAAAAAQG4UtdaNnn322bjpppviX//1X48bnI+I2LlzZzzyyCNx8803x9atW3Paz+9///v40pe+FP/8z/983OB8RMS+ffviySefjBtuuCHefPPNnPYDAAAAAAAAAAAAAEDupNLpdDrXN1m2bFncdttt0dDQkFwbMGBAXHrppdG9e/eoqqqKpUuXxuHDh5P3Bw8eHAsXLszJE9/XrVsX48ePj0OHDiXXevbsGZ/97GejoqIi3nvvvVi6dGm8//77yfuVlZXx1FNPRe/evVt8/5qammiFv3YAgDMqlUpF9+7dI8L8AwC0D+YfAKC9Mf8AAO2N+QcAaG+OnX8KRc7D8zt27IixY8dGbW3thzdMpWLatGkxYcKEKCr6zwff79mzJ+68885YsWJFcu3666+POXPmZLWfw4cPx9ixY+O9995Lrn3961+Pu+66Kzp27JhcO3DgQEyfPj1eeOGF5Nrw4cPjF7/4RYt7MDwDAO2BHx4CAO2N+QcAaG/MPwBAe2P+AQDam0IMzxedeknLzJs3LwnOR0R885vfjIkTJ2YE5yMiysvLY/78+TFo0KDk2gsvvBDr16/Paj8/+9nPMoLzX/nKV2LatGkZwfmIiC5dusTs2bPj8ssvT66tWbMmfvvb32a1HwAAAAAAAAAAAAAAci+n4fldu3bFokWLkrp///4xefLkE64vLS2N6dOnJ3U6nY558+ZlrZ/6+vqYP39+Unft2jWmTZt2wvVFRUUxa9asjKD/Y489lrV+AAAAAAAAAAAAAABoHTkNzy9ZsiTq6+uTety4cVFSUnLSPZdffnkMHDgwqZctWxYHDx7MSj+vvfZa7N27N6m/+MUvRrdu3U6655xzzokrrrgiqdetWxfvvvtuVvoBAAAAAAAAAAAAAKB15DQ8/9JLL2XUY8eObdK+a6+9NnldV1cXr7zySk76OfY+J9O47yVLlmSlHwAAAAAAAAAAAAAAWkdOw/OrVq1KXldUVES/fv2atG/48OEZ9euvv56VflauXJm87tChQ1x44YVN2nfxxRfnpB8AAAAAAAAAAAAAAFpHzsLz1dXVsX///qQeMmRIk/cOHTo0o964cWOL+2loaIgtW7Yk9TnnnBOdO3du0t6BAwdGp06dstoPAAAAAAAAAAAAAACtJ2fh+U2bNmXUZ599dpP3VlRURElJSVJv3ry5xf1s27Yt6urqTqufVCoVvXv3Tup333036uvrW9wTAAAAAAAAAAAAAACtI6dPnj/WseHzU0mlUtGrV68TntXa/URERj9HjhyJ3bt3t7gnAAAAAAAAAAAAAABaR3GuDj548GBGXVZW1qz9nTt3Tl4fOXIk6urqorS09LT7qa2tzVo/xzuvOVKp1GnvBQBoK46decw/AEB7YP4BANob8w8A0N6YfwCA9qYQZ55WC883N/jeeH1tbW2LwvPZ7qfxec3RrVu3094LANAWmX8AgPbG/AMAtDfmHwCgvTH/AAC0TUW5Oriuri6jLikpadb+jh07nvS8tt4PAAAAAAAAAAAAAACtJ2fh+cZPaq+vr2/W/g8++OCk57X1fgAAAAAAAAAAAAAAaD05C8+XlZVl1M19Unvj9Z07d86rfhqfBwAAAAAAAAAAAABA/mq18HxtbW2z9h+7vri4uMVPem8cvm9JP8c7DwAAAAAAAAAAAACA/JWz8HyvXr0y6urq6ibvTafTGesbn9Xa/UREbN++PXldXFwcZ511Vot7AgAAAAAAAAAAAACgdeQsPD9o0KCMetu2bU3eu2vXrqivr0/qgQMHtrifPn36RKdOnU6rn3Q6nRGe79+/f5SUlLS4JwAAAAAAAAAAAAAAWkfOwvM9e/aMrl27JvWbb77Z5L3r16/PqLMRni8qKooBAwYkdVVVVdTW1jZp78aNG6Ouri6r/QAAAAAAAAAAAAAA0HpyFp6PiBgxYkTyevfu3VFVVdWkfatXr86oR44cmfV+jh49GmvXrm3SvjVr1uSkHwAAAAAAAAAAAAAAWkdOw/NjxozJqF988cUm7Vu8eHHyurS0NK688soz2k/jdY3PAQAAAAAAAAAAAAAgv+U0PD969OgoKSlJ6kWLFkV9ff1J9yxfvjw2b96c1FdffXWUlZVlpZ9Ro0ZFeXl5Uj///PPx/vvvn3TPO++8E6+++mpSDxs2LPr165eVfgAAAAAAAAAAAAAAaB3FuTy8oqIixo0bFz//+c8jIqKqqiqeeOKJuP3224+7vq6uLu6///6kTqVSMXXq1BOev3Xr1oynwPfp0ydeeumlE64vKSmJSZMmxcMPPxwREfv374+HHnooHnjggY+trampiZUrV8bf/d3fRUNDQ3J9ypQpJzw/l2pra2PlypVRXV0dNTU1UV5eHn369IkRI0ZEx44dz0hPAEBhqampidWrV8f27dvjwIED0bNnz+jbt28MHz48OnTo0Gp9HDhwIP7jP/4jNm3aFDU1NVFfXx+f/OQno3fv3nHRRRdlfBgSAKAl8mX+AQBoTfk6A+3evTv+/d//Pd59992ora2Njh07Rnl5efTv3z+GDBkSnTt3PmO9AQBtWz7NPw0NDbFhw4Z48803Y+/evXHo0KHo3LlznHXWWTF06NAYMGBApFKpVu0JACDX8i0DndPwfMSHYfNnnnkmamtrIyJi7ty5UVZWFhMmTIiiov988P2ePXvizjvvjA0bNiTXrrvuuhg6dGhW+xk/fnw8+eST8d5770VExK9+9avo1q1b3HXXXdGxY8fYvHlzzJ49O5YuXRpHjhz52P7vf//78cc//jGmTJnSKv9gO3bsiDlz5sTixYvj4MGDH3u/W7du8aUvfSm+/e1vR5cuXXLeDwBQeD6af15++eXjfktQZWVl3HzzzTmdf9544434zW9+E6+++mqsX78+48OLjV144YUxYcKEuP766/3wEAA4Lfkw/zTFggUL4qGHHsq4NmrUqHjyySfPUEcAQFuWrzPQkiVLYsGCBbFy5cpIp9PHXVNUVBTDhg2LW265Jb785S+3Wm8AQNuWT/PP/v37Y/78+fGrX/0qdu7cecJ1ffr0iT//8z+PCRMmRGlpaU57AgAKS21tbaxfvz7Wrl0ba9eujTfeeCO2bduWvH+qB5TnQr5moFPpE/0UKotefvnlmDp1akYIasCAAXHZZZdF9+7d45133omlS5fG4cOHk/cHDx4cCxcuPOlfRnOfPP+RdevWxfjx4+PQoUPJtZ49e8aAAQNi9erVxw3NNzZ06NCYO3du9O3b95RrT9fvf//7uPfee2Pv3r2nXNuvX7+YO3duDBkyJGf9AACF59lnn42ZM2ced0BtLFfzz8SJE+PVV19t9r7LL788Hn744ejZs2dW+wEACls+zD9NsXXr1vjTP/3Tj/UpPA8AnI58nIH27t0b3/nOd+Lll19u8p7rrrsufvCDH+SuKQCgYOTT/LNmzZq48847o7q6usl7zj333Hj00Udj0KBBOekJACgcCxYsiKeffjo2bNhw0odVtnZ4Pp8z0K0Sno+IeOaZZ2LmzJkZgfUTGTJkSDzyyCOnHEpPNzwfEfG73/0u7r333qipqTnl2q5du8YFF1wQq1evbnbA/3SdKOD/2c9+NioqKuK9996LpUuXxvvvv5+8X1lZGU899VT07t076/0AAIVn2bJlcdttt33sA46XXnppdO/ePaqqqk7rA47N9eUvfzneeuutjGtnn312XHTRRdGzZ88oKyuLXbt2xYoVK2LLli0Z6wYNGhQ///nPo0ePHlnrBwAoXPky/zTFrbfeGr///e8/dl14HgBornycgaqrq2PChAmxefPmjOvnnXdeXHjhhVFRURFHjx6NHTt2xB/+8IfYuHFjRAjPAwBNk0/zz1tvvRXjx4+PAwcOJNdSqVSMGDEihg0bFl27do19+/bFH/7wh1izZk3G3srKyvjlL38ZZ599dlZ7AgAKyze+8Y1YsmTJKde1Zng+3zPQrRaej4jYtGlTzJ49O5YtW3bCr0MaN25c3HbbbU36OqSWhOcjPvw6gNmzZ8eLL76YMRB/pPHXAezZsyfuvPPOWLFiRbLm+uuvjzlz5jT5nk1x+PDhGDt2bLz33nvJta9//etx1113Zfy9HDhwIKZPnx4vvPBCcm348OHxi1/8Iqv9AACFZ8eOHTF27Niora2NiA9/SDdt2rSYMGFCFBUVJetaY/75KDxfUVERN954Y3zlK1+Jc88992Pr0ul0LF68OGbMmBH79u1Lrl977bXxD//wD1nrBwAoTPk0/5zKM888E9OmTYuID39eduxXeQvPAwDNkY8zUF1dXYwbNy7jYQqXXHJJzJgxI84///zj7nn33Xfj2WefjZqamvje976X9Z4AgMKRT/NPOp2OcePGxdq1a5Nr5513XsyePTvOO++8j61fv3593H333RkfMLzmmmvi0UcfzVpPAEDhOV54vqysLIYNGxbr1q1LvomntcLzbSED3arh+Y/s3bs3Vq9eHdu3b4/a2tqoqKiIfv36xcUXXxwdOnRo7Xbie9/7XixatCipx4wZE3/xF38Rl1xyycdC/HV1dXHjjTcmT7hIpVLx9NNPx9ChQ7PWz/z58+Nv//Zvk/orX/lKPPDAA8dd29DQEF//+tdj+fLlybVHH300rrnmmqz1AwAUnlmzZsU//dM/JfW3vvWtuP3224+7Ntfzz8SJE+Ozn/1sjB8/vkkfoDzep1MXLVoUF154YVb6AQAKUz7NPyezZ8+euO6662Lv3r2RSqVi9uzZcffddyfvC88DAM2RjzPQD37wg3j88ceT+ktf+lI8/PDDkUqlsnofAKB9yqf559///d9j3LhxSd2tW7d4/vnno7Ky8oR7qqur4/rrr4/9+/cnPS1btix69eqVlZ4AgMJz1113xdatW+OCCy6IT3/603HBBRfEoEGDoqioKEaPHh3btm2LiNYLz7eFDHTRqZdkX48ePWLMmDExfvz4mDx5ctx0000xcuTIMxKc37VrVzzzzDNJ3b9///j7v//7uOKKK44b3iotLY3p06cndTqdjnnz5mWtn/r6+pg/f35Sd+3aNXnS2PEUFRXFrFmzMj4d+9hjj2WtHwCg8OzatSvjg4P9+/ePyZMnn3B9ruefH/3oRzFx4sQmBecjIoYNGxYTJkzIuLZ48eKs9QMAFJ58m39O5oEHHoi9e/dGRMTNN98cf/Inf9Iq9wUACk8+zkAbNmyIH//4x0k9bNiwePDBBwXnAYCsyLf559gQWETEuHHjThqcj4jo1atX/Pf//t8zenrttdey1hMAUHh+8IMfxKJFi2LGjBlx0003xac+9amMTHFraisZ6DPzt5NHlixZEvX19Uk9bty4KCkpOemeyy+/PAYOHJjUy5YtS77WoKVee+215BekERFf/OIXo1u3bifdc84558QVV1yR1OvWrYt33303K/0AAIUn3+af4uLiZu+5/vrrM+pjv+4SAKCxfJt/TuR3v/tdPPfccxERUVlZGffcc09O7wcAFLZ8nIEWLFiQ0dNf/dVfndbPhgAAjiff5p/q6uqM+qKLLmrSvosvvjij3rFjR1b6AQDItbaSgW734fnGX0EwduzYJu279tprk9d1dXXxyiuv5KSfY+9zMo37XrJkSVb6AQAKT77NP6fjnHPOyah37959hjoBANqCtjD/HDx4MO67776k/u53vxuf/OQnc3Y/AKDw5dsMVFtbGy+88EJSDxkyJEaMGJGVswEAIvJv/mloaMioO3Xq1KR9n/jEJzJq39IDALQVbSUD3e7D86tWrUpeV1RURL9+/Zq0b/jw4Rn166+/npV+Vq5cmbzu0KFDXHjhhU3a1/hTp9nqBwAoPPk2/5yO2trajNoTygCAk2kL888Pf/jD2LZtW0REXHXVVR/7ph0AgObKtxlo6dKlGU9xNe8AANmWb/NP3759M+r33nuvSfs++hnRRxo/VAoAIF+1lQx0uw7PV1dXx/79+5N6yJAhTd47dOjQjHrjxo0t7qehoSG2bNmS1Oecc0507ty5SXsHDhyY8QnVbPQDABSefJt/Ttfbb7+dUffu3fsMdQIA5Lu2MP+sXbs2fvazn0VERGlpacYT6AEATkc+zkD/9//+34z6kksuycq5AAAR+Tn/fOYzn8mo/+Vf/qVJ+479tp6ysrK49NJLs9IPAEAutaUMdLsOz2/atCmjPvvss5u8t6KiIkpKSpJ68+bNLe5n27ZtUVdXd1r9pFKpjNDYu+++G/X19S3uCQAoLPk2/5yuX//61xn1ZZdddoY6AQDyXb7PP0eOHInp06fH0aNHIyJi6tSp0b9//6zfBwBoX/JxBvrDH/6QvC4uLk4CbdXV1fHEE0/En//5n8dVV10VF110UXz+85+PW265JR577LF49913s3J/AKCw5eP881//63+Nz33uc0n9yiuvxP/5P//npHt++tOfxr/9278l9cSJE6Nr165Z6QcAIJfaUga6XYfnq6urM+rmPLE0lUpFr169TnhWa/cTERn9HDlyJHbv3t3ingCAwpJv88/p2LJlSzz33HNJ3aFDh/jCF75wRnoBAPJfvs8/8+fPj7feeisiIgYNGhS33npr1u8BALQ/+TgDHfvEsMrKyujUqVP80z/9U4wdOzZmz54da9asiZ07d8ahQ4fi//2//xcrVqyIv//7v4//9t/+W9x///3xwQcfZKUPAKAw5eP8ExHx/e9/P/r165fUM2fOjLvvvjtee+21OHDgQKTT6di/f38sX748vvnNb8YDDzyQrP385z8fU6dOzVovAAC51JYy0MU5O7kNOHjwYEZdVlbWrP3Hfp3AkSNHoq6uLkpLS0+7n9ra2qz1c7zzAADybf5proaGhvje976X8enSG264IeOHjgAAx8rn+WfLli3x2GOPRcSHv6SdNWtWdOzYMStnAwDtW77NQA0NDbF///6krqysjB/+8Icxb968U+6tr6+PJ598MtatWxc/+tGPokuXLqfdBwBQuPJt/vlIz549Y+HChTFz5sz4zW9+ExERzz//fDz//PMn3NOlS5eYNGlSTJ48OTp06NDiHgAAWkNbykC36yfPNx6cmzv0Nl7f0n+obPfT+DwAgHybf5rr0Ucfjddffz2py8vL4957723VHgCAtiVf5590Oh3Tp09Pvr7ypptuipEjR2blbACAfJuB9u/fH+l0Oqk3b96cBOeLi4tj/PjxsWjRoli9enWsWbMmfvWrX8Utt9wSxcX/+Ryw1atXx1/91V+1qA8AoHDl2/xzrLPOOivmzp0bTzzxxCmfwNq/f//44Q9/GFOnThWcBwDalLaUgW7XT57/6JeTHykpKWnW/sZPAmt8XlvvBwAoPG153vjtb38bjz76aFKnUqn467/+6ygvL2+1HgCAtidf55+nnnoqVqxYERERPXr0iL/8y7/MyrkAABH5NwM1/mXnR0+hLy0tjXnz5sWVV16Z8f6nP/3p+PSnPx1jxoyJ2267LQ4fPhwRES+++GK89NJLMXr06Bb1AwAUnnybf45VXV0dDz74YLz44osZHyg8nqqqqpg0aVIMHz487r///hg8eHDW+gAAyKV8nscaa9dPnm/8KYX6+vpm7f/ggw9Oel5b7wcAKDxtdd5YtWpV3HPPPRk/ULzjjjv8ohQAOKV8nH927twZDz/8cFJPmzYtevTo0eJzAQA+km8z0In2f/vb3/5YcP5Yl19+edx9990Z13784x+3qBcAoDDl2/zzkbfeeiu+/OUvx7/8y79EOp2OVCoVf/qnfxoLFiyI5cuXxx/+8IdYvnx5/PjHP44vfvGLkUqlIiJizZo18Wd/9mcZ38gMAJDP8nUeO552HZ4vKyvLqJv7KYXG6zt37pxX/TQ+DwAg3+afpnj77bcznjAWEfHVr3417rjjjpzfGwBo+/Jx/vn+978f77//fkREjBo1Km688cYWnwkAcKx8m4GO9zurbt26xfjx40+596tf/WrGNw+uWrUqampqWtQPAFB48m3+iYjYt29f/M//+T9j7969EfHh01fnzZsXf/d3fxdXXHFFlJeXR0lJSZSXl8dVV10Vs2fPjsceeyx5SuuhQ4fijjvuiJ07d7a4FwCAXGtLGWjh+WPU1tY2a/+x64uLi1v8KYfGg3dL+jneeQAA+Tb/nEpVVVXceuutSbgsIuK6666LGTNm5PS+AEDhyLf5Z8mSJbF48eKI+PAXprNmzWrReQAAx5NvM1CnTp2iuLg449oVV1zRpHM7duwYV111VVKn0+lYs2ZNi/oBAApPvs0/ERGPP/547NixI6m//e1vx+c///mT7hk9enTceeedSV1TUxPz5s1rcS8AALnWljLQ7To836tXr4y6urq6yXvT6XTG+sZntXY/ERHbt29PXhcXF8dZZ53V4p4AgMKSb/PPyVRXV8fXvva1jKdpfOYzn4mHH344iora9RgLADRDvs0/Dz30UPJ68uTJMXDgwBafCQDQWL7NQMc751Of+lST95533nkZdXN/hwYAFL58m3/S6XQ888wzSV1WVhZ/8Rd/0aS9t9xyS8aHAZ577rloaGhocU8AALnUljLQxadeUrgGDRqUUW/btq3Je3ft2hX19fVJnY1fdPbp0yc6deoUhw8fbnY/6XQ643+c/v37J1/jBADwkXybf05kz549MXHixIz+LrnkknjkkUfMOABAs+Tb/PPR13RHfPj0sccff7xZ+1esWBFDhw5N6pEjR8ZPf/rTFvcFABSWfJuBPurp2D66devW5L2N1+7bty8rPQEAhSPf5p+qqqrYs2dPUl944YXRqVOnJu3t1KlTXHDBBfHaa69FRMT7778f77zzTpx77rkt7gsAIFfaUga6XT+ys2fPntG1a9ekfvPNN5u8d/369Rl1NgbnoqKiGDBgQFJXVVU1+WsLNm7cGHV1dVntBwAoPPk2/xzPgQMHYtKkSbFx48bk2rBhw+If//Efm/xDRQCAj+Tz/HP06NEm/TnZPk8dAwCOJx9noMGDB2fUH3zwQZP3Nl5bWlqalZ4AgMKRb/PP7t27M+qKiopm7a+srMyoj30gAwBAPmpLGeh2HZ6PiBgxYkTyevfu3VFVVdWkfatXr86oR44cmfV+jh49GmvXrm3SvjVr1uSkHwCg8OTb/HOsw4cPx5QpU2LdunXJtcGDB8f8+fOjS5cuWb8fANA+5PP8AwCQK/k2A40aNSqjbs5Xdx/75LGIiB49emSlJwCgsOTT/NP4w37HhsGa4tChQxl1WVlZi3sCAMi1tpKBbvfh+TFjxmTUL774YpP2LV68OHldWloaV1555Rntp/G6xucAAHwk3+afj9TX18e3vvWtWLlyZXKtf//+8ZOf/CTKy8uzei8AoH3Jp/ln5cqV8fbbbzf5z5IlSzL2jxo1KuP9J598ssU9AQCFKZ9moIiIK6+8MiP01TikdjKNf4E6dOjQrPQEABSWfJp/zjrrrIz62G9cborG6/2uDABoC9pKBrrdh+dHjx4dJSUlSb1o0aKor68/6Z7ly5fH5s2bk/rqq6/O2ic8R40alTHwPv/88/H++++fdM8777wTr776alIPGzYs+vXrl5V+AIDCk2/zT0REQ0NDTJs2LZYtW5Zc6927dyxYsCB69eqVtfsAAO1TPs4/AAC5lm8zUMeOHeOaa65J6rVr18Yf//jHU+7buHFjrFq1Kql79uwZn/rUp7LSEwBQWPJp/undu3f07NkzqTdt2hRvvfVWk/a+8cYbsWXLlqTu06dPxlkAAPmqrWSg2314vqKiIsaNG5fUVVVV8cQTT5xwfV1dXdx///1JnUqlYurUqSdcv3Xr1jj//POTP6NHjz5pPyUlJTFp0qSk3r9/fzz00EMnXN/Q0BD33XdfNDQ0JNe+8Y1vnPQeAED7lm/zT0TEzJkz4/nnn0/qs846KxYsWBB9+/Y95V4AgFPJx/kHACDX8nEG+sY3vhHFxcVJPXPmzJMG2o4cORIzZ86MdDqdXLvllltOeR8AoH3Kt/nn85//fEY9c+bM+OCDD066p66uLmbNmpVxzc+aAIAzpVAz0O0+PB8RMWXKlOjcuXNSz507NxYsWJDxjxERsWfPnpg0aVJs2LAhuXbddddl/ashx48fH//lv/yXpP7Vr34Vf/M3f/OxAfrAgQNxzz33xPLly5Nrw4cPz3hqBwDA8eTT/DNnzpxYuHBhUnfr1i1+8pOfxMCBA7N2DwCAfJp/AABaS77NQOeee27cfPPNSb1q1aqYOnVq7Nix42Nrd+7cGbfffnusWLEiudanT5/4H//jf2S1JwCgsOTT/DN58uSMJ+GvWbMmbr311qiqqjru+k2bNsWECRPijTfeSK6VlpZmBNAAAPJdW8hAp9LHPqqhHXv55Zdj6tSpGcPygAED4rLLLovu3bvHO++8E0uXLo3Dhw8n7w8ePDgWLlwYXbp0OeG5W7dujTFjxiR1nz594qWXXjplP+vWrYvx48fHoUOHkms9e/aMq6++Os4666zYvn17vPTSSxlfZ1BZWRlPPfVU9O7du8n/3QBA+5Uv88/555+fUadSqSgqav5nPNevX9/sPQBA+5Iv809zND571KhR8eSTT2blbACgfci3GeiDDz6Ir33ta7Fq1arkWqdOneLKK6+MQYMGRcSHwbFXXnkl4/dkn/jEJ+LnP/95DBs2rGn/4QBAu5VP88/ChQtjxowZGdc6dOgQI0aMiKFDh0aXLl1i//79sW7duli9evXHQv5/8zd/EzfccENT/rMBgHZq27Zt8YUvfOG47x09ejSj7tChw3HX/e///b9j1KhRH7teqBno4lMvaR8+97nPxYMPPhgzZ85M/rG2bNkSW7ZsOe76IUOGxCOPPHLSobklhg0bFnPnzo177703ampqIiJix44dsWjRouOu79u3b8ydO1dwHgBosnybfz6STqc/NrwDAGRDvs4/AAC5lG8zUMeOHeOxxx6Lu+++O1555ZWIiDh8+HAsWbIklixZctw9lZWVMW/ePMF5AKBJ8mn++ehbdx544IEkrH/06NFYsWJFxjfsNFZWVhbTp08XnAcATqk5OZsTrcv2c9jzPQPd/Ed6FrAbbrghnn766bjmmmsyvjbpWJWVlXH77bfHL3/5y+jbt29O+/nMZz4Tzz33XNxwww3xiU984rhrunXrFrfccks8++yzvj4cAGi2fJt/AAByzfwDALRH+TYDde/ePX784x/HrFmzYvDgwSddN2XKlHj++efjggsuyGlPAEBhyaf55+abb45f//rX8dWvfjU6d+580rVdunSJ8ePHx69//eu46aabctYTAECu5XMGOpXO9scFCsTevXtj9erVsX379qitrY2Kioro169fXHzxxSf82oJcqq2tjZUrV8Z7770X+/bti/Ly8ujTp09ccskl0bFjx1bvBwAoPPk2/wAA5Jr5BwBoj/JxBnrrrbdi48aNUV1dHUePHo0ePXrEpz71qbjggguiqMizwACAlsmn+efo0aPx9ttvxx//+MeoqamJgwcPRllZWXTv3j3OP//8OO+88/xcCgAoOPmWgRaeBwAAAAAAAAAAAACg4HlUAwAAAAAAAAAAAAAABU94HgAAAAAAAAAAAACAgic8DwAAAAAAAAAAAABAwROeBwAAAAAAAAAAAACg4AnPAwAAAAAAAAAAAABQ8ITnAQAAAAAAAAAAAAAoeMLzAAAAAAAAAAAAAAAUPOF5AAAAAAAAAAAAAAAKnvA8AAAAAAAAAAAAAAAFT3geAAAAAAAAAAAAAICCJzwPAAAAAAAAAAAAAEDBE54HAAAAAAAAAAAAAKDgCc8DAAAAAAAAAAAAAFDwhOcBAAAAAAAAAAAAACh4wvMAAAAAAAAAAAAAABQ84XkAAAAAAAAAAAAAAAqe8DwAAAAAAAAAAAAAAAVPeB4AAAAAAAAAAAAAgIInPA8AAAAAAAAAAAAAQMETngcAAAAAAAAAAAAAoOAJzwMAAAAAAAAAAAAAUPCE5wEAAAAAAAAAAAAAKHjC8wAAAAAAAAAAAAAAFDzheQAAAAAAAAAAAAAACp7wPAAAAAAAAAAAAAAABU94HgAAAAAAAAAAAACAgvf/AaIklrgTysaQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 1811, + "width": 1511 + } + }, + "output_type": "display_data" + } + ], "source": [ "christmas_index = 78736\n", "\n",