forked from foamliu/Deep-Image-Matting-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (136 loc) · 6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import torch
from tensorboardX import SummaryWriter
from torch import nn
from config import device, im_size, grad_clip, print_freq
from data_gen import DIMDataset
from models import DIMModel
from utils import parse_args, save_checkpoint, AverageMeter, clip_gradient, get_logger, get_learning_rate, \
alpha_prediction_loss, adjust_learning_rate
def train_net(args):
torch.manual_seed(7)
np.random.seed(7)
checkpoint = args.checkpoint
start_epoch = 0
best_loss = float('inf')
writer = SummaryWriter()
epochs_since_improvement = 0
decays_since_improvement = 0
# Initialize / load checkpoint
if checkpoint is None:
model = DIMModel(n_classes=1, in_channels=4, is_unpooling=True, pretrain=True)
model = nn.DataParallel(model)
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.mom,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
else:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
model = checkpoint['model'].module
optimizer = checkpoint['optimizer']
logger = get_logger()
# Move to GPU, if available
model = model.to(device)
# Custom dataloaders
train_dataset = DIMDataset('train')
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=8)
valid_dataset = DIMDataset('valid')
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8)
# Epochs
for epoch in range(start_epoch, args.end_epoch):
if args.optimizer == 'sgd' and epochs_since_improvement == 10:
break
if args.optimizer == 'sgd' and epochs_since_improvement > 0 and epochs_since_improvement % 2 == 0:
checkpoint = 'BEST_checkpoint.tar'
checkpoint = torch.load(checkpoint)
model = checkpoint['model']
optimizer = checkpoint['optimizer']
decays_since_improvement += 1
print("\nDecays since last improvement: %d\n" % (decays_since_improvement,))
adjust_learning_rate(optimizer, 0.6 ** decays_since_improvement)
# One epoch's training
train_loss = train(train_loader=train_loader,
model=model,
optimizer=optimizer,
epoch=epoch,
logger=logger)
effective_lr = get_learning_rate(optimizer)
print('Current effective learning rate: {}\n'.format(effective_lr))
writer.add_scalar('Train_Loss', train_loss, epoch)
writer.add_scalar('Learning_Rate', effective_lr, epoch)
# One epoch's validation
valid_loss = valid(valid_loader=valid_loader,
model=model,
logger=logger)
writer.add_scalar('Valid_Loss', valid_loss, epoch)
# Check if there was an improvement
is_best = valid_loss < best_loss
best_loss = min(valid_loss, best_loss)
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
decays_since_improvement = 0
# Save checkpoint
save_checkpoint(epoch, epochs_since_improvement, model, optimizer, best_loss, is_best)
def train(train_loader, model, optimizer, epoch, logger):
model.train() # train mode (dropout and batchnorm is used)
losses = AverageMeter()
# Batches
for i, (img, alpha_label) in enumerate(train_loader):
# Move to GPU, if available
img = img.type(torch.FloatTensor).to(device) # [N, 4, 320, 320]
alpha_label = alpha_label.type(torch.FloatTensor).to(device) # [N, 320, 320]
alpha_label = alpha_label.reshape((-1, 2, im_size * im_size)) # [N, 320*320]
# Forward prop.
alpha_out = model(img) # [N, 3, 320, 320]
alpha_out = alpha_out.reshape((-1, 1, im_size * im_size)) # [N, 320*320]
# Calculate loss
# loss = criterion(alpha_out, alpha_label)
loss = alpha_prediction_loss(alpha_out, alpha_label)
# Back prop.
optimizer.zero_grad()
loss.backward()
# Clip gradients
clip_gradient(optimizer, grad_clip)
# Update weights
optimizer.step()
# Keep track of metrics
losses.update(loss.item())
# Print status
if i % print_freq == 0:
status = 'Epoch: [{0}][{1}/{2}]\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, i, len(train_loader), loss=losses)
logger.info(status)
return losses.avg
def valid(valid_loader, model, logger):
model.eval() # eval mode (dropout and batchnorm is NOT used)
losses = AverageMeter()
# Batches
for img, alpha_label in valid_loader:
# Move to GPU, if available
img = img.type(torch.FloatTensor).to(device) # [N, 3, 320, 320]
alpha_label = alpha_label.type(torch.FloatTensor).to(device) # [N, 320, 320]
alpha_label = alpha_label.reshape((-1, 2, im_size * im_size)) # [N, 320*320]
# Forward prop.
alpha_out = model(img) # [N, 320, 320]
alpha_out = alpha_out.reshape((-1, 1, im_size * im_size)) # [N, 320*320]
# Calculate loss
# loss = criterion(alpha_out, alpha_label)
loss = alpha_prediction_loss(alpha_out, alpha_label)
# Keep track of metrics
losses.update(loss.item())
# Print status
status = 'Validation: Loss {loss.avg:.4f}\n'.format(loss=losses)
logger.info(status)
return losses.avg
def main():
global args
args = parse_args()
train_net(args)
if __name__ == '__main__':
main()