-
Notifications
You must be signed in to change notification settings - Fork 23
/
utils.py
579 lines (446 loc) · 21.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import numpy as np
import torch
from torch.utils.data.dataset import TensorDataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.autograd import Variable
def my_softmax(input, axis=1):
trans_input = input.transpose(axis, 0).contiguous()
soft_max_1d = F.softmax(trans_input, dim=0)
return soft_max_1d.transpose(axis, 0)
def binary_concrete(logits, tau=1, hard=False, eps=1e-10):
y_soft = binary_concrete_sample(logits, tau=tau, eps=eps)
if hard:
y_hard = (y_soft > 0.5).float()
y = Variable(y_hard.data - y_soft.data) + y_soft
else:
y = y_soft
return y
def binary_concrete_sample(logits, tau=1, eps=1e-10):
logistic_noise = sample_logistic(logits.size(), eps=eps)
if logits.is_cuda:
logistic_noise = logistic_noise.cuda()
y = logits + Variable(logistic_noise)
return F.sigmoid(y / tau)
def sample_logistic(shape, eps=1e-10):
uniform = torch.rand(shape).float()
return torch.log(uniform + eps) - torch.log(1 - uniform + eps)
def sample_gumbel(shape, eps=1e-10):
"""
NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcfed4c44c62b208f750058d14d4dc1b9a9d3
Sample from Gumbel(0, 1)
based on
https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb ,
(MIT license)
"""
U = torch.rand(shape).float()
return - torch.log(eps - torch.log(U + eps))
def gumbel_softmax_sample(logits, tau=1, eps=1e-10):
"""
NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcfed4c44c62b208f750058d14d4dc1b9a9d3
Draw a sample from the Gumbel-Softmax distribution
based on
https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb
(MIT license)
"""
gumbel_noise = sample_gumbel(logits.size(), eps=eps)
if logits.is_cuda:
gumbel_noise = gumbel_noise.cuda()
y = logits + Variable(gumbel_noise)
return my_softmax(y / tau, axis=-1)
def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10):
"""
NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcfed4c44c62b208f750058d14d4dc1b9a9d3
Sample from the Gumbel-Softmax distribution and optionally discretize.
Args:
logits: [batch_size, n_class] unnormalized log-probs
tau: non-negative scalar temperature
hard: if True, take argmax, but differentiate w.r.t. soft sample y
Returns:
[batch_size, n_class] sample from the Gumbel-Softmax distribution.
If hard=True, then the returned sample will be one-hot, otherwise it will
be a probability distribution that sums to 1 across classes
Constraints:
- this implementation only works on batch_size x num_features tensor for now
based on
https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb ,
(MIT license)
"""
y_soft = gumbel_softmax_sample(logits, tau=tau, eps=eps)
if hard:
shape = logits.size()
_, k = y_soft.data.max(-1)
# this bit is based on
# https://discuss.pytorch.org/t/stop-gradients-for-st-gumbel-softmax/530/5
y_hard = torch.zeros(*shape)
if y_soft.is_cuda:
y_hard = y_hard.cuda()
y_hard = y_hard.zero_().scatter_(-1, k.view(shape[:-1] + (1,)), 1.0)
# this cool bit of code achieves two things:
# - makes the output value exactly one-hot (since we add then
# subtract y_soft value)
# - makes the gradient equal to y_soft gradient (since we strip
# all other gradients)
y = Variable(y_hard - y_soft.data) + y_soft
else:
y = y_soft
return y
def binary_accuracy(output, labels):
preds = output > 0.5
correct = preds.type_as(labels).eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def load_dataset_train(batch_size=1, suffix='', number_exp=1, dims=6):
feat_train = np.load('data/features.npy')
edges_train = np.load('data/edges.npy')
assert(feat_train.shape[0] >= number_exp)
assert(feat_train.shape[2] >= dims)
feat_train = feat_train[0:number_exp, :, 0:dims, :]
edges_train = edges_train[0:number_exp, :, :]
# [num_samples, num_timesteps, num_dims, num_genes]
num_genes = feat_train.shape[3]
feat_max = feat_train.max()
feat_min = feat_train.min()
# Normalize to [-1, 1]
feat_train = (feat_train - feat_min) * 2 / (feat_max - feat_min) - 1
# Reshape to: [num_samples, num_genes, num_timesteps, num_dims]
feat_train = np.transpose(feat_train, [0, 3, 1, 2])
edges_train = np.reshape(edges_train, [-1, num_genes ** 2])
edges_train = np.array((edges_train + 1) / 2, dtype=np.int64)
# Exclude self edges
off_diag_idx = np.ravel_multi_index(
np.where(np.ones((num_genes, num_genes)) - np.eye(num_genes)),
[num_genes, num_genes])
edges_train = edges_train[:, off_diag_idx]
feat_train = torch.FloatTensor(feat_train)
edges_train = torch.LongTensor(edges_train)
train_data = TensorDataset(feat_train, edges_train)
train_data_loader = DataLoader(train_data, batch_size=batch_size)
return train_data_loader, feat_max, feat_min
def load_dataset_train_valid_test(batch_size=1, number_exp=1, number_expstart=0, dims=6):
feat_train = np.load('data/features.npy')
edges_train = np.load('data/edges.npy')
feat_valid = np.load('data/features_valid.npy')
edges_valid = np.load('data/edges_valid.npy')
feat_test = np.load('data/features_test.npy')
edges_test = np.load('data/edges_test.npy')
assert (feat_train.shape[0] >= number_exp)
assert (feat_train.shape[2] >= dims)
feat_train = feat_train[number_expstart:number_exp, :, 0:dims, :]
edges_train = edges_train[number_expstart:number_exp, :, :]
feat_valid = feat_valid[number_expstart:number_exp, :, 0:dims, :]
edges_valid = edges_valid[number_expstart:number_exp, :, :]
feat_test = feat_test[:, :, 0:dims, :]
# [num_samples, num_timesteps, num_dims, num_genes]
num_genes = feat_train.shape[3]
loc_max = feat_train[:, :, 0:3, :].max()
loc_min = feat_train[:, :, 0:3, :].min()
vel_max = feat_train[:, :, 3:6, :].max()
vel_min = feat_train[:, :, 3:6, :].min()
# Normalize to [-1, 1]
loc_train = (feat_train[:, :, 0:3, :] - loc_min) * \
2 / (loc_max - loc_min) - 1
vel_train = (feat_train[:, :, 3:6, :] - vel_min) * \
2 / (vel_max - vel_min) - 1
loc_valid = (feat_valid[:, :, 0:3, :] - loc_min) * \
2 / (loc_max - loc_min) - 1
vel_valid = (feat_valid[:, :, 3:6, :] - vel_min) * \
2 / (vel_max - vel_min) - 1
loc_test = (feat_test[:, :, 0:3, :] - loc_min) * \
2 / (loc_max - loc_min) - 1
vel_test = (feat_test[:, :, 3:6, :] - vel_min) * \
2 / (vel_max - vel_min) - 1
feat_train = np.concatenate((loc_train, vel_train), axis=2)
feat_valid = np.concatenate((loc_valid, vel_valid), axis=2)
feat_test = np.concatenate((loc_test, vel_test), axis=2)
# Reshape to: [num_samples, num_genes, num_timesteps, num_dims]
feat_train = np.transpose(feat_train, [0, 3, 1, 2])
edges_train = np.reshape(edges_train, [-1, num_genes ** 2])
edges_train = np.array((edges_train + 1) / 2, dtype=np.int64)
feat_valid = np.transpose(feat_valid, [0, 3, 1, 2])
edges_valid = np.reshape(edges_valid, [-1, num_genes ** 2])
edges_valid = np.array((edges_valid + 1) / 2, dtype=np.int64)
feat_test = np.transpose(feat_test, [0, 3, 1, 2])
edges_test = np.reshape(edges_test, [-1, num_genes ** 2])
edges_test = np.array((edges_test + 1) / 2, dtype=np.int64)
# Exclude self edges
off_diag_idx = np.ravel_multi_index(
np.where(np.ones((num_genes, num_genes)) - np.eye(num_genes)),
[num_genes, num_genes])
edges_train = edges_train[:, off_diag_idx]
edges_valid = edges_valid[:, off_diag_idx]
edges_test = edges_test[:, off_diag_idx]
feat_train = torch.FloatTensor(feat_train)
edges_train = torch.LongTensor(edges_train)
feat_valid = torch.FloatTensor(feat_valid)
edges_valid = torch.LongTensor(edges_valid)
feat_test = torch.FloatTensor(feat_test)
edges_test = torch.LongTensor(edges_test)
train_data = TensorDataset(feat_train, edges_train)
valid_data = TensorDataset(feat_valid, edges_valid)
test_data = TensorDataset(feat_test, edges_test)
train_data_loader = DataLoader(train_data, batch_size=batch_size)
valid_data_loader = DataLoader(valid_data, batch_size=batch_size)
test_data_loader = DataLoader(test_data, batch_size=batch_size)
return train_data_loader, valid_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min
def load_dataset_train_test(batch_size=1, number_exp=1, number_expstart=0, dims=6):
feat_train = np.load('data/features.npy')
edges_train = np.load('data/edges.npy')
feat_test = np.load('data/features_test.npy')
edges_test = np.load('data/edges_test.npy')
assert(feat_train.shape[0] >= number_exp)
assert(feat_train.shape[2] >= dims)
feat_train = feat_train[number_expstart:number_exp, :, 0:dims, :]
edges_train = edges_train[number_expstart:number_exp, :, :]
feat_test = feat_test[:, :, 0:dims, :]
# [num_samples, num_timesteps, num_dims, num_genes]
num_genes = feat_train.shape[3]
loc_max = feat_train[:, :, 0:3, :].max()
loc_min = feat_train[:, :, 0:3, :].min()
vel_max = feat_train[:, :, 3:6, :].max()
vel_min = feat_train[:, :, 3:6, :].min()
# Normalize to [-1, 1]
loc_train = (feat_train[:, :, 0:3, :] - loc_min) * \
2 / (loc_max - loc_min) - 1
vel_train = (feat_train[:, :, 3:6, :] - vel_min) * \
2 / (vel_max - vel_min) - 1
loc_test = (feat_test[:, :, 0:3, :] - loc_min) * \
2 / (loc_max - loc_min) - 1
vel_test = (feat_test[:, :, 3:6, :] - vel_min) * \
2 / (vel_max - vel_min) - 1
feat_train = np.concatenate((loc_train, vel_train), axis=2)
feat_test = np.concatenate((loc_test, vel_test), axis=2)
# Reshape to: [num_samples, num_genes, num_timesteps, num_dims]
feat_train = np.transpose(feat_train, [0, 3, 1, 2])
edges_train = np.reshape(edges_train, [-1, num_genes ** 2])
edges_train = np.array((edges_train + 1) / 2, dtype=np.int64)
feat_test = np.transpose(feat_test, [0, 3, 1, 2])
edges_test = np.reshape(edges_test, [-1, num_genes ** 2])
edges_test = np.array((edges_test + 1) / 2, dtype=np.int64)
# Exclude self edges
off_diag_idx = np.ravel_multi_index(
np.where(np.ones((num_genes, num_genes)) - np.eye(num_genes)),
[num_genes, num_genes])
edges_train = edges_train[:, off_diag_idx]
edges_test = edges_test[:, off_diag_idx]
feat_train = torch.FloatTensor(feat_train)
edges_train = torch.LongTensor(edges_train)
feat_test = torch.FloatTensor(feat_test)
edges_test = torch.LongTensor(edges_test)
train_data = TensorDataset(feat_train, edges_train)
test_data = TensorDataset(feat_test, edges_test)
train_data_loader = DataLoader(train_data, batch_size=batch_size)
test_data_loader = DataLoader(test_data, batch_size=batch_size)
return train_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min
def load_data(batch_size=1, suffix=''):
loc_train = np.load('data/loc_train' + suffix + '.npy')
vel_train = np.load('data/vel_train' + suffix + '.npy')
edges_train = np.load('data/edges_train' + suffix + '.npy')
loc_valid = np.load('data/loc_valid' + suffix + '.npy')
vel_valid = np.load('data/vel_valid' + suffix + '.npy')
edges_valid = np.load('data/edges_valid' + suffix + '.npy')
loc_test = np.load('data/loc_test' + suffix + '.npy')
vel_test = np.load('data/vel_test' + suffix + '.npy')
edges_test = np.load('data/edges_test' + suffix + '.npy')
# [num_samples, num_timesteps, num_dims, num_atoms]
num_atoms = loc_train.shape[3]
loc_max = loc_train.max()
loc_min = loc_train.min()
vel_max = vel_train.max()
vel_min = vel_train.min()
# Normalize to [-1, 1]
loc_train = (loc_train - loc_min) * 2 / (loc_max - loc_min) - 1
vel_train = (vel_train - vel_min) * 2 / (vel_max - vel_min) - 1
loc_valid = (loc_valid - loc_min) * 2 / (loc_max - loc_min) - 1
vel_valid = (vel_valid - vel_min) * 2 / (vel_max - vel_min) - 1
loc_test = (loc_test - loc_min) * 2 / (loc_max - loc_min) - 1
vel_test = (vel_test - vel_min) * 2 / (vel_max - vel_min) - 1
# Reshape to: [num_sims, num_atoms, num_timesteps, num_dims]
loc_train = np.transpose(loc_train, [0, 3, 1, 2])
vel_train = np.transpose(vel_train, [0, 3, 1, 2])
feat_train = np.concatenate([loc_train, vel_train], axis=3)
edges_train = np.reshape(edges_train, [-1, num_atoms ** 2])
edges_train = np.array((edges_train + 1) / 2, dtype=np.int64)
loc_valid = np.transpose(loc_valid, [0, 3, 1, 2])
vel_valid = np.transpose(vel_valid, [0, 3, 1, 2])
feat_valid = np.concatenate([loc_valid, vel_valid], axis=3)
edges_valid = np.reshape(edges_valid, [-1, num_atoms ** 2])
edges_valid = np.array((edges_valid + 1) / 2, dtype=np.int64)
loc_test = np.transpose(loc_test, [0, 3, 1, 2])
vel_test = np.transpose(vel_test, [0, 3, 1, 2])
feat_test = np.concatenate([loc_test, vel_test], axis=3)
edges_test = np.reshape(edges_test, [-1, num_atoms ** 2])
edges_test = np.array((edges_test + 1) / 2, dtype=np.int64)
feat_train = torch.FloatTensor(feat_train)
edges_train = torch.LongTensor(edges_train)
feat_valid = torch.FloatTensor(feat_valid)
edges_valid = torch.LongTensor(edges_valid)
feat_test = torch.FloatTensor(feat_test)
edges_test = torch.LongTensor(edges_test)
# Exclude self edges
off_diag_idx = np.ravel_multi_index(
np.where(np.ones((num_atoms, num_atoms)) - np.eye(num_atoms)),
[num_atoms, num_atoms])
edges_train = edges_train[:, off_diag_idx]
edges_valid = edges_valid[:, off_diag_idx]
edges_test = edges_test[:, off_diag_idx]
train_data = TensorDataset(feat_train, edges_train)
valid_data = TensorDataset(feat_valid, edges_valid)
test_data = TensorDataset(feat_test, edges_test)
train_data_loader = DataLoader(train_data, batch_size=batch_size)
valid_data_loader = DataLoader(valid_data, batch_size=batch_size)
test_data_loader = DataLoader(test_data, batch_size=batch_size)
return train_data_loader, valid_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min
def load_kuramoto_data(batch_size=1, suffix=''):
feat_train = np.load('data/feat_train' + suffix + '.npy')
edges_train = np.load('data/edges_train' + suffix + '.npy')
feat_valid = np.load('data/feat_valid' + suffix + '.npy')
edges_valid = np.load('data/edges_valid' + suffix + '.npy')
feat_test = np.load('data/feat_test' + suffix + '.npy')
edges_test = np.load('data/edges_test' + suffix + '.npy')
# [num_sims, num_atoms, num_timesteps, num_dims]
num_atoms = feat_train.shape[1]
# Normalize each feature dim. individually
feat_max = feat_train.max(0).max(0).max(0)
feat_min = feat_train.min(0).min(0).min(0)
feat_max = np.expand_dims(np.expand_dims(
np.expand_dims(feat_max, 0), 0), 0)
feat_min = np.expand_dims(np.expand_dims(
np.expand_dims(feat_min, 0), 0), 0)
# Normalize to [-1, 1]
feat_train = (feat_train - feat_min) * 2 / (feat_max - feat_min) - 1
feat_valid = (feat_valid - feat_min) * 2 / (feat_max - feat_min) - 1
feat_test = (feat_test - feat_min) * 2 / (feat_max - feat_min) - 1
# Reshape to: [num_sims, num_atoms, num_timesteps, num_dims]
edges_train = np.reshape(edges_train, [-1, num_atoms ** 2])
edges_valid = np.reshape(edges_valid, [-1, num_atoms ** 2])
edges_test = np.reshape(edges_test, [-1, num_atoms ** 2])
feat_train = torch.FloatTensor(feat_train)
edges_train = torch.LongTensor(edges_train)
feat_valid = torch.FloatTensor(feat_valid)
edges_valid = torch.LongTensor(edges_valid)
feat_test = torch.FloatTensor(feat_test)
edges_test = torch.LongTensor(edges_test)
# Exclude self edges
off_diag_idx = np.ravel_multi_index(
np.where(np.ones((num_atoms, num_atoms)) - np.eye(num_atoms)),
[num_atoms, num_atoms])
edges_train = edges_train[:, off_diag_idx]
edges_valid = edges_valid[:, off_diag_idx]
edges_test = edges_test[:, off_diag_idx]
train_data = TensorDataset(feat_train, edges_train)
valid_data = TensorDataset(feat_valid, edges_valid)
test_data = TensorDataset(feat_test, edges_test)
train_data_loader = DataLoader(train_data, batch_size=batch_size)
valid_data_loader = DataLoader(valid_data, batch_size=batch_size)
test_data_loader = DataLoader(test_data, batch_size=batch_size)
return train_data_loader, valid_data_loader, test_data_loader
def to_2d_idx(idx, num_cols):
idx = np.array(idx, dtype=np.int64)
y_idx = np.array(np.floor(idx / float(num_cols)), dtype=np.int64)
x_idx = idx % num_cols
return x_idx, y_idx
def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
enumerate(classes)}
labels_onehot = np.array(list(map(classes_dict.get, labels)),
dtype=np.int32)
return labels_onehot
def get_triu_indices(num_nodes):
"""Linear triu (upper triangular) indices."""
ones = torch.ones(num_nodes, num_nodes)
eye = torch.eye(num_nodes, num_nodes)
triu_indices = (ones.triu() - eye).nonzero().t()
triu_indices = triu_indices[0] * num_nodes + triu_indices[1]
return triu_indices
def get_tril_indices(num_nodes):
"""Linear tril (lower triangular) indices."""
ones = torch.ones(num_nodes, num_nodes)
eye = torch.eye(num_nodes, num_nodes)
tril_indices = (ones.tril() - eye).nonzero().t()
tril_indices = tril_indices[0] * num_nodes + tril_indices[1]
return tril_indices
def get_offdiag_indices(num_nodes):
"""Linear off-diagonal indices."""
ones = torch.ones(num_nodes, num_nodes)
eye = torch.eye(num_nodes, num_nodes)
offdiag_indices = (ones - eye).nonzero().t()
offdiag_indices = offdiag_indices[0] * num_nodes + offdiag_indices[1]
return offdiag_indices
def get_triu_offdiag_indices(num_nodes):
"""Linear triu (upper) indices w.r.t. vector of off-diagonal elements."""
triu_idx = torch.zeros(num_nodes * num_nodes)
triu_idx[get_triu_indices(num_nodes)] = 1.
triu_idx = triu_idx[get_offdiag_indices(num_nodes)]
return triu_idx.nonzero()
def get_tril_offdiag_indices(num_nodes):
"""Linear tril (lower) indices w.r.t. vector of off-diagonal elements."""
tril_idx = torch.zeros(num_nodes * num_nodes)
tril_idx[get_tril_indices(num_nodes)] = 1.
tril_idx = tril_idx[get_offdiag_indices(num_nodes)]
return tril_idx.nonzero()
def get_minimum_distance(data):
data = data[:, :, :, :2].transpose(1, 2)
data_norm = (data ** 2).sum(-1, keepdim=True)
dist = data_norm + \
data_norm.transpose(2, 3) - \
2 * torch.matmul(data, data.transpose(2, 3))
min_dist, _ = dist.min(1)
return min_dist.view(min_dist.size(0), -1)
def get_buckets(dist, num_buckets):
dist = dist.cpu().data.numpy()
min_dist = np.min(dist)
max_dist = np.max(dist)
bucket_size = (max_dist - min_dist) / num_buckets
thresholds = bucket_size * np.arange(num_buckets)
bucket_idx = []
for i in range(num_buckets):
if i < num_buckets - 1:
idx = np.where(np.all(np.vstack((dist > thresholds[i],
dist <= thresholds[i + 1])), 0))[0]
else:
idx = np.where(dist > thresholds[i])[0]
bucket_idx.append(idx)
return bucket_idx, thresholds
def get_correct_per_bucket(bucket_idx, pred, target):
pred = pred.cpu().numpy()[:, 0]
target = target.cpu().data.numpy()
correct_per_bucket = []
for i in range(len(bucket_idx)):
preds_bucket = pred[bucket_idx[i]]
target_bucket = target[bucket_idx[i]]
correct_bucket = np.sum(preds_bucket == target_bucket)
correct_per_bucket.append(correct_bucket)
return correct_per_bucket
def get_correct_per_bucket_(bucket_idx, pred, target):
pred = pred.cpu().numpy()
target = target.cpu().data.numpy()
correct_per_bucket = []
for i in range(len(bucket_idx)):
preds_bucket = pred[bucket_idx[i]]
target_bucket = target[bucket_idx[i]]
correct_bucket = np.sum(preds_bucket == target_bucket)
correct_per_bucket.append(correct_bucket)
return correct_per_bucket
def kl_categorical(preds, log_prior, num_atoms, eps=1e-16):
kl_div = preds * (torch.log(preds + eps) - log_prior)
return kl_div.sum() / (num_atoms * preds.size(0))
def kl_categorical_uniform(preds, num_atoms, num_edge_types, add_const=False,
eps=1e-16):
kl_div = preds * torch.log(preds + eps)
if add_const:
const = np.log(num_edge_types)
kl_div += const
return kl_div.sum() / (num_atoms * preds.size(0))
def nll_gaussian(preds, target, variance, add_const=False):
neg_log_p = ((preds - target) ** 2 / (2 * variance))
if add_const:
const = 0.5 * np.log(2 * np.pi * variance)
neg_log_p += const
return neg_log_p.sum() / (target.size(0) * target.size(1))
def edge_accuracy(preds, target):
_, preds = preds.max(-1)
correct = preds.float().data.eq(
target.float().data.view_as(preds)).cpu().sum()
return np.float(correct) / (target.size(0) * target.size(1))