Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Subject: No Improvement in Validation Accuracy #9

Open
vas2201 opened this issue Feb 13, 2024 · 1 comment
Open

Subject: No Improvement in Validation Accuracy #9

vas2201 opened this issue Feb 13, 2024 · 1 comment

Comments

@vas2201
Copy link

vas2201 commented Feb 13, 2024

Hi

I'm reaching out to request your help to resolve with an issue we're encountering in the current project, specifically regarding the validation accuracy (acc_val) in our model's performance, which is not showing any improvement.

We are using a model with the following configuration:
Number of residues: 98
Edge types: 4
Dimensions: 6
Timesteps: 50
Prediction steps: 1
Batch size: 1
Learning rate: 0.0005
Encoder/Decoder: MLP for encoder and RNN for decoder
Dynamic graph, factor graph, and prior usage are enabled
Issue Description:
Throughout the training process over 30 epochs (in total 500), despite seeing significant changes in the nll_train, kl_train, mse_train, and acc_train metrics, the validation accuracy (acc_val) remains at 0.0000000000. This indicates that the model is not correctly validating against the test dataset.

Epoch: 0000 nll_train: 93185.7750843593 kl_train: 195.2919983183 mse_train: 0.0316958412 acc_train: 0.0915887710 nll_val: 104181.9461495536 kl_val: -0.2983094061 mse_val: 0.0354360349 acc_val: 0.0000000000 time: 866.2107s
Best model so far, saving...
Epoch: 0001 nll_train: 40856.0143786839 kl_train: 204.9207121985 mse_train: 0.0138966030 acc_train: 0.0893383126 nll_val: 75632.8662109375 kl_val: -0.1133307992 mse_val: 0.0257254635 acc_val: 0.0000000000 time: 713.4318s
Best model so far, saving...
Epoch: 0002 nll_train: 28308.7293363299 kl_train: 198.1665186201 mse_train: 0.0096288194 acc_train: 0.2112199814 nll_val: 44862.8242187500 kl_val: -0.1718699533 mse_val: 0.0152594636 acc_val: 0.0000000000 time: 443.2562s
Best model so far, saving...
Epoch: 0003 nll_train: 23041.0194764818 kl_train: 187.3990933555 mse_train: 0.0078370812 acc_train: 0.3721070903 nll_val: 60220.3454066685 kl_val: -0.1325645934 mse_val: 0.0204831097 acc_val: 0.0000000000 time: 740.4529s
Epoch: 0004 nll_train: 20646.6544189453 kl_train: 177.2104825974 mse_train: 0.0070226713 acc_train: 0.4466821707 nll_val: 68130.9513762338 kl_val: -0.4891080290 mse_val: 0.0231737920 acc_val: 0.0000000000 time: 500.6341s
Epoch: 0005 nll_train: 21552.2414591653 kl_train: 155.8838998250 mse_train: 0.0073306941 acc_train: 0.5703503051 nll_val: 27796.2101353237 kl_val: -0.1425452123 mse_val: 0.0094544931 acc_val: 0.0000000000 time: 733.5250s
Best model so far, saving...
Epoch: 0006 nll_train: 14991.4931028911 kl_train: 163.2396456855 mse_train: 0.0050991474 acc_train: 0.5408952241 nll_val: 59636.6536690848 kl_val: -0.1362025940 mse_val: 0.0202845746 acc_val: 0.0000000000 time: 597.9917s
Epoch: 0007 nll_train: 14380.3693662371 kl_train: 152.6876725469 mse_train: 0.0048912819 acc_train: 0.5902738120 nll_val: 14925.1580543518 kl_val: -0.1527265439 mse_val: 0.0050765842 acc_val: 0.0000000000 time: 405.4773s
Best model so far, saving...
Epoch: 0008 nll_train: 10603.3555524009 kl_train: 154.0793498584 mse_train: 0.0036065834 acc_train: 0.5898699318 nll_val: 26743.8529139927 kl_val: -24.2923367723 mse_val: 0.0090965485 acc_val: 0.0000000000 time: 981.2972s
Epoch: 0009 nll_train: 10464.2849783216 kl_train: 152.4066004072 mse_train: 0.0035592805 acc_train: 0.6285898380 nll_val: 81366.5099051339 kl_val: -0.1153421539 mse_val: 0.0276756824 acc_val: 0.0000000000 time: 386.0460s
Epoch: 0010 nll_train: 12756.5482781274 kl_train: 149.8410109111 mse_train: 0.0043389617 acc_train: 0.5913539569 nll_val: 24450.8945312500 kl_val: -0.1167528553 mse_val: 0.0083166306 acc_val: 0.0000000000 time: 388.5709s
Epoch: 0011 nll_train: 10343.5727191653 kl_train: 145.4063068117 mse_train: 0.0035182219 acc_train: 0.5680622765 nll_val: 46710.4846540179 kl_val: -0.1308913601 mse_val: 0.0158879196 acc_val: 0.0000000000 time: 937.4590s
Epoch: 0012 nll_train: 12361.6497343608 kl_train: 145.2983415467 mse_train: 0.0042046425 acc_train: 0.6046425566 nll_val: 47477.3231724330 kl_val: -0.1025856223 mse_val: 0.0161487487 acc_val: 0.0000000000 time: 485.8568s
Epoch: 0013 nll_train: 11850.1992909568 kl_train: 146.6304704802 mse_train: 0.0040306801 acc_train: 0.5974891798 nll_val: 25451.9597516741 kl_val: -0.0844267165 mse_val: 0.0086571290 acc_val: 0.0000000000 time: 437.3189s
Epoch: 0014 nll_train: 12070.4967947006 kl_train: 142.0481354850 mse_train: 0.0041056111 acc_train: 0.6370844730 nll_val: 85820.4837472098 kl_val: -0.0702253677 mse_val: 0.0291906401 acc_val: 0.0000000000 time: 774.2346s
Epoch: 0015 nll_train: 14697.3387419837 kl_train: 125.9110430990 mse_train: 0.0049990949 acc_train: 0.6360926182 nll_val: 60153.0705915179 kl_val: -0.1054519279 mse_val: 0.0204602274 acc_val: 0.0000000000 time: 511.0689s
Epoch: 0016 nll_train: 19818.1795234680 kl_train: 124.6392605645 mse_train: 0.0067408772 acc_train: 0.6660285985 nll_val: 75138.3114536830 kl_val: -0.0228514423 mse_val: 0.0255572480 acc_val: 0.0000000000 time: 463.1343s
Epoch: 0017 nll_train: 11727.2011769159 kl_train: 121.3601091589 mse_train: 0.0039888440 acc_train: 0.6728569926 nll_val: 66181.2564871652 kl_val: -0.0667972792 mse_val: 0.0225106296 acc_val: 0.0000000000 time: 903.3679s
Epoch: 0018 nll_train: 9472.3040493556 kl_train: 113.7943201065 mse_train: 0.0032218720 acc_train: 0.6828431667 nll_val: 25592.9206891741 kl_val: -0.0853543440 mse_val: 0.0087050749 acc_val: 0.0000000000 time: 478.9071s
Epoch: 0019 nll_train: 9525.3769065312 kl_train: 109.1455590725 mse_train: 0.0032399239 acc_train: 0.6851894292 nll_val: 28269.2817731585 kl_val: -32.3087573009 mse_val: 0.0096154019 acc_val: 0.0000000000 time: 586.1777s
Epoch: 0020 nll_train: 8881.7724550792 kl_train: 107.0338555234 mse_train: 0.0030210109 acc_train: 0.6891981756 nll_val: 41667.0500837054 kl_val: -0.0795855493 mse_val: 0.0141724662 acc_val: 0.0000000000 time: 791.1620s
Epoch: 0021 nll_train: 10563.2213559832 kl_train: 105.0309611389 mse_train: 0.0035929323 acc_train: 0.6962144210 nll_val: 20989.0607212612 kl_val: -0.0574653355 mse_val: 0.0071391361 acc_val: 0.0000000000 time: 430.2279s
Epoch: 0022 nll_train: 7643.8489691871 kl_train: 101.9360435690 mse_train: 0.0025999486 acc_train: 0.7003396351 nll_val: 23780.3366699219 kl_val: -4.3749750680 mse_val: 0.0080885497 acc_val: 0.0000000000 time: 421.6247s
Epoch: 0023 nll_train: 6881.1352819715 kl_train: 101.7752324002 mse_train: 0.0023405222 acc_train: 0.6987203571 nll_val: 20917.7909109933 kl_val: -0.0962230675 mse_val: 0.0071148943 acc_val: 0.0000000000 time: 1056.8995s
Epoch: 0024 nll_train: 6526.3531938280 kl_train: 103.0320355892 mse_train: 0.0022198479 acc_train: 0.6942814313 nll_val: 22670.8121861049 kl_val: -0.0894306706 mse_val: 0.0077111607 acc_val: 0.0000000000 time: 533.5991s
Epoch: 0025 nll_train: 6397.3086107799 kl_train: 105.1447147812 mse_train: 0.0021759552 acc_train: 0.6876258604 nll_val: 13848.4286411830 kl_val: -0.0812793788 mse_val: 0.0047103497 acc_val: 0.0000000000 time: 884.6829s
Best model so far, saving...
Epoch: 0026 nll_train: 6180.4524361747 kl_train: 104.9708604472 mse_train: 0.0021021946 acc_train: 0.6880015629 nll_val: 32681.5507812500 kl_val: -0.1826013448 mse_val: 0.0111161736 acc_val: 0.0000000000 time: 479.3236s
Epoch: 0027 nll_train: 5294.6343832016 kl_train: 104.7728396314 mse_train: 0.0018008960 acc_train: 0.6865419585 nll_val: 13213.0326450893 kl_val: -0.0821504131 mse_val: 0.0044942286 acc_val: 0.0000000000 time: 508.0394s
Best model so far, saving...
Epoch: 0028 nll_train: 5129.1191129684 kl_train: 105.5634074892 mse_train: 0.0017445983 acc_train: 0.6834799826 nll_val: 21072.2561907087 kl_val: -0.1658951991 mse_val: 0.0071674339 acc_val: 0.0000000000 time: 918.2695s
Epoch: 0029 nll_train: 4824.5187172209 kl_train: 106.2803972449 mse_train: 0.0016409927 acc_train: 0.6795125635 nll_val: 12688.9289376395 kl_val: -0.0989101932 mse_val: 0.0043159621 acc_val: 0.0000000000 time: 542.2904s
Best model so far, saving...

vas2201:~/workflow2024/NRI-MD-main$ python3 npy_data_pattren.py
File: data/edges.npy
Shape: (98, 98, 98)
Size: 941192
Dtype: float64

File: data/edges_test.npy
Shape: (98, 98, 98)
Size: 941192
Dtype: float64

File: data/edges_valid.npy
Shape: (98, 98, 98)
Size: 941192
Dtype: float64

File: data/features.npy
Shape: (98, 50, 6, 98)
Size: 2881200
Dtype: float64

File: data/features_test.npy
Shape: (98, 50, 6, 98)
Size: 2881200
Dtype: float64

File: data/features_valid.npy
Shape: (98, 50, 6, 98)
Size: 2881200
Dtype: float64

@chagas98
Copy link

chagas98 commented Apr 5, 2024

Also, I am running the ca_1.pdb test file and getting negative values from KL Validation for each epoch. I observed that you had a similar issue. Shouldn't KL Divergence values be positive?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants